分析 设事件A表示“甲猜对”,事件B表示乙猜对,甲、乙二人各猜一次谜,则恰有一人猜对的概率为P(A$\overline{B}$+$\overline{A}$B)=P(A$\overline{B}$)+P($\overline{A}$B),由此能求出结果.
解答 解:设事件A表示“甲猜对”,事件B表示乙猜对,
则P(A)=$\frac{4}{5}$,P(B)=$\frac{2}{3}$,
∴甲、乙二人各猜一次谜,则恰有一人猜对的概率:
P(A$\overline{B}$+$\overline{A}$B)=P(A$\overline{B}$)+P($\overline{A}$B)
=$\frac{4}{5}×(1-\frac{2}{3})$+(1-$\frac{4}{5}$)×$\frac{2}{3}$
=$\frac{2}{5}$.
故答案为:$\frac{2}{5}$.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件概率乘法公式、互斥事件概率加法公式、对立事件概率计算公式的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 双曲线、椭圆 | B. | 椭圆、抛物线 | C. | 双曲线、抛物线 | D. | 无法确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | $\frac{π}{3}$ | $\frac{5π}{6}$ | |||
| f(x)=Asin(ωx+φ), | 0 | 5 | -5 | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x≠0,x2≤0 | B. | ?x=0,x2≤0 | C. | ?x0≠0,${x_0}^2≤0$ | D. | ?x0=0,${x_0}^2≤0$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com