精英家教网 > 高中数学 > 题目详情
7.在△ABC中,内角A、B、C所对应的边分别为a、b、c,若bsinA-$\sqrt{3}$acosB=0,则A+C=120°.

分析 直接利用正弦定理化简,结合sinA≠0,可得:tanB=$\sqrt{3}$,可求B,进而利用三角形内角和定理即可计算得解.

解答 解:在△ABC中,bsinA-$\sqrt{3}$acosB=0,
由正弦定理可得:sinBsinA=$\sqrt{3}$sinAcosB,
∵sinA≠0.
∴sinB=$\sqrt{3}$cosB,可得:tanB=$\sqrt{3}$,
∴B=60°,则A+C=180°-B=120°.
故答案为:120°.

点评 本题考查正弦定理,三角形内角和定理的应用,三角形的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,左焦点F1到直线$x=-\frac{a^2}{c}$的距离为3,圆N的方程为(x-c)2+y2=a2+c2(c为半焦距),直线l:y=kx+m(k>0)与椭圆M和圆N均只有一个公共点,分别设为A,B.
(1)求椭圆M的方程和直线l的方程;
(2)在圆N上是否存在点P,使$\frac{|PB|}{|PA|}=2\sqrt{2}$,若存在,求出P点坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.满足a=4,b=3和A=45°的△ABC的个数为(  )
A.0个B.1个C.2个D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知方程x2-4x+1=0的两根是两圆锥曲线的离心率,则这两圆锥曲线是(  )
A.双曲线、椭圆B.椭圆、抛物线C.双曲线、抛物线D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.按下列程序框图运算,则输出的结果是(  )
A.42B.128C.170D.682

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,f(x)=2018x+log2018x,则函数f(x)的零点个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若角θ满足sinθ<0,tanθ<0,则角θ是(  )
A.第一象限角或第二象限角B.第二象限角或第四象限角
C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=|x2+ax+b|在区间[0,c]内的最大值为M(a,b∈R,c>0位常数)且存在实数a,b,使得M取最小值2,则a+b+c=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在边长为2的正三角形ABC中,设$\overrightarrow{BC}$=2$\overrightarrow{BD}$,$\overrightarrow{CA}$=3$\overrightarrow{CE}$,则$\overrightarrow{AD}$•$\overrightarrow{BE}$=-1.

查看答案和解析>>

同步练习册答案