精英家教网 > 高中数学 > 题目详情
16.已知抛物线C的顶点在坐标原点O,焦点F在x轴的正半轴上,抛物线上的点N到F的距离为2,且N的横坐标为1,过焦点F作倾斜角为锐角的直线l交抛物线于A、B两点,且与其准线交于点D.
(1)求抛物线C的标准方程;
(2)若线段AB的长为8,求直线l的方程;
(3)在C上是否存在点M,使得对任意直线l,直线MA、MD、MB的斜率始终满足2kMD=kMA+kMB?若存在,求点M的坐标,若不存在,说明理由.

分析 (1)由题意可设抛物线方程为:y2=2px,利用$1+\frac{p}{2}$=|NF|=2,解得p即可得出;
(2)F(1,0),设直线l方程为y=k(x-1),(k>0),A(x1,y1),B(x2,y2),与抛物线方程联立化为k2x2-(4+2k2)x+k2=0,利用|AB|=x1+x2+p=8.即可解出k.
(3)假设存在M$(\frac{{t}^{2}}{4},t)$,$A(\frac{{y}_{1}^{2}}{4},{y}_{1})$,B$(\frac{{y}_{2}^{2}}{4},{y}_{2})$,直线l方程my=x-1(m>0).D$(-1,\frac{-2}{m})$.直线l方程与抛物线方程联立化为y2-4my-4=0,利用斜率计算公式与根与系数的关系,及其满足2kMD=kMA+kMB,可得$\frac{2(mt+2)}{m({t}^{2}+4)}$=$\frac{1}{t+{y}_{1}}+\frac{1}{t+{y}_{2}}$,化为(t2-4)m2=0,解出即可.

解答 解:(1)由题意可设抛物线方程为:y2=2px,
∵$1+\frac{p}{2}$=|NF|=2,解得p=2.
∴抛物线方程为:y2=4x.
(2)F(1,0),
设直线l方程为y=k(x-1),(k>0),A(x1,y1),B(x2,y2),
联立$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,化为k2x2-(4+2k2)x+k2=0,
∴x1+x2=$\frac{4+2{k}^{2}}{{k}^{2}}$.
∵|AB|=8,∴$\frac{4+2{k}^{2}}{{k}^{2}}$+2=8,
化为k2=1,又k>0,
解得k=1.
∴直线l的方程为:y=x-1.
(3)假设存在M$(\frac{{t}^{2}}{4},t)$,$A(\frac{{y}_{1}^{2}}{4},{y}_{1})$,B$(\frac{{y}_{2}^{2}}{4},{y}_{2})$,直线l方程my=x-1(m>0).
D$(-1,\frac{-2}{m})$.
联立$\left\{\begin{array}{l}{my=x-1}\\{{y}^{2}=4x}\end{array}\right.$,化为y2-4my-4=0,∴y1+y2=4m,y1y2=-4.
kMD=$\frac{t+\frac{2}{m}}{\frac{{t}^{2}}{4}+1}$=$\frac{4(mt+2)}{m({t}^{2}+4)}$,kMA=$\frac{t-{y}_{1}}{\frac{{t}^{2}}{4}-\frac{{y}_{1}^{2}}{4}}$=$\frac{4}{t+{y}_{1}}$,kMB=$\frac{4}{t+{y}_{2}}$,
∵满足2kMD=kMA+kMB
∴$\frac{2(mt+2)}{m({t}^{2}+4)}$=$\frac{1}{t+{y}_{1}}+\frac{1}{t+{y}_{2}}$,
∵$\frac{1}{t+{y}_{1}}+\frac{1}{t+{y}_{2}}$=$\frac{2t+{y}_{1}+{y}_{2}}{{t}^{2}+t({y}_{1}+{y}_{2})+{y}_{1}{y}_{2}}$=$\frac{2t+4m}{{t}^{2}+4tm-4}$,
∴$\frac{mt+2}{m({t}^{2}+4)}$=$\frac{2t+4m}{{t}^{2}+4tm-4}$,
化为(t2-4)m2=0,
因此对于m2>0,可得t2-4=0,解得t=±2.
因此存在M(1,±2)满足2kMD=kMA+kMB

点评 本题考查了抛物线的标准方程及其性质、焦点弦长公式、直线与抛物线相交转化为方程联立可得根与系数的关系、斜率计算公式等基础知识与基本技能,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.数列{an}中,已知a1=$\frac{1}{2}$,an=an-1+$\frac{1}{n(n+1)}$(n≥2,n∈N*).
(1)计算a2,a3,a4的值,并归纳猜想出数列{an}的通项公式;
(2)试用数学归纳法证明你归纳猜想出的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=cosφ}\\{y=a+sinφ}\end{array}\right.$(φ为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程是ρcos(θ-$\frac{π}{6}$)=1.
(1)求直线l的直角坐标方程;
(2)若直线l被圆C截得的弦长为$\sqrt{3}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知α,β,γ满足3sinα+4sinβ+5sinγ=0,3cosα+4cosβ+5cosγ=0,则cos2(α-γ)的值为(  )
A.-$\frac{3}{5}$B.-$\frac{7}{25}$C.$\frac{7}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2cos($\frac{π}{4}$-$\frac{x}{2}$).
(1)求f(x)的单调递减区间;
(2)若x∈[-π,π],求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设M={a|a=x2-y2,x,y∈Z},求证:4k-2∉M(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若实数x,y满足x2+y2=1,则$\frac{xy+1}{x+y-1}$的取值范围是(-∞,1-$\sqrt{2}$]∪($\sqrt{2}$+1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知三角形三个顶点A(2,4),B(1,-2),C(-2,3),求直线BC的方程及BC上高AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线D:$\frac{{x}^{2}}{4{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1 (a>0,b>0),直线l:x=$\frac{{a}^{2}}{c}$与双曲线D的两条渐近线分别交于点A,B.若椭圆E的右焦点F在以线段AB为直径的圆内,则椭圆的离心率e的取值范围是$(\frac{\sqrt{3}}{2},1)$.

查看答案和解析>>

同步练习册答案