精英家教网 > 高中数学 > 题目详情
15.设函数f(x)=|x-$\frac{1}{2}$|,x∈R
(1)求不等式f(-x)+f(x-1)>5的解集;
(2)设g(x)=f2(x)+$\frac{55}{4}$,且|x-a|<1,求证:|g(x)-g(a)|<2(|a|+1)

分析 (1)根据绝对值的意义,讨论x的取值,去掉绝对值,解不等式f(-x)+f(x-1)>5即可;
(2)利用f(x)=|x-$\frac{1}{2}$|,代入g(x)中,化简|g(x)-g(a)|,证明不等式成立.

解答 解:(1)∵函数f(x)=|x-$\frac{1}{2}$|,x∈R;
∴不等式f(-x)+f(x-1)>5可化为
|-x-$\frac{1}{2}$|+|x-1-$\frac{1}{2}$|>5,
即|x+$\frac{1}{2}$|+|x-$\frac{3}{2}$|>5;
当x≥$\frac{3}{2}$时,不等式化为(x+$\frac{1}{2}$)+(x-$\frac{3}{2}$)>5,
解得x>3;
当$\frac{3}{2}$>x>-$\frac{1}{2}$时,不等式化为(x+$\frac{1}{2}$)+($\frac{3}{2}$-x)>5,
解得x∈∅;
当x≤-$\frac{1}{2}$时,不等式化为-(x+$\frac{1}{2}$)+($\frac{3}{2}$-x)>5,
解得x<-2;
综上,不等式的解集为{x|x<-2或x>3};
(2)证明:∵f(x)=|x-$\frac{1}{2}$|,
∴g(x)=f2(x)+$\frac{55}{4}$=${(x-\frac{1}{2})}^{2}$+$\frac{55}{4}$,且|x-a|<1,
∴|g(x)-g(a)|=|${(x-\frac{1}{2})}^{2}$-${(a-\frac{1}{2})}^{2}$|
=|(x+a-1)(x-a)|<|x+a-1|≤|x|+|a|+1≤(|a|+1)+|a|+1=2(|a|+1).

点评 本题考查了含有绝对值不等式的解法与应用问题,也考查了不等式的证明问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,已知E,F分别是矩形ABCD的边BC,CD的中点,EF与AC交于点G,若$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{AD}=\overrightarrow{b}$,用$\overrightarrow{a},\overrightarrow{b}$表示$\overrightarrow{AG}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\left\{\begin{array}{l}{sin(π{x}^{2}),}&{(-1<x<0)}\\{{e}^{x-1},}&{(x≥0)}\end{array}\right.$满足f(1)+f(a)=2,则a的所有可能值为(  )
A.1B.-$\frac{\sqrt{2}}{2}$C.1或-$\frac{\sqrt{2}}{2}$D.1或$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|2x-m|-3x,m≠0.
(Ⅰ)当m=3时,求不等式f(x)≤1-2x的解集;
(Ⅱ)若不等式f(x)≤0的解集包含{x丨x≥1},求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在△ABC中,$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AC}$,$\overrightarrow{BP}$=$\frac{1}{3}$$\overrightarrow{BD}$,若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则$\frac{λ}{μ}$的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow{a}$⊥$\overrightarrow{b}$,$\overrightarrow{c}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,若|$\overrightarrow{c}$|=$\sqrt{10}$,则$\overrightarrow{c}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角的余弦值的最小值为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.当输入的实数x∈[2,30]时,执行如图所示的程序框图,则输出的x不小于103的概率是$\frac{5}{28}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.图中的三个直角三角形是一个体积为30cm3的几何体的三视图,则侧视图中的h=6cm.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.正项数列{an}中,a1=4,an2=2(an+1)an-1-an(n≥2),则log2a1+log2a2+…+log2a100=5150.

查看答案和解析>>

同步练习册答案