精英家教网 > 高中数学 > 题目详情
10.如图为平行四边形ABCD,G为BC的中点,M、N分别为AB和CD的三等分点(M靠近A,N靠近C).$\overrightarrow{AB}=a$,$\overrightarrow{AD}=b$,则$\overrightarrow{GN}-\overrightarrow{GM}$=$\frac{1}{3}$$\overrightarrow{a}$+$\overrightarrow{b}$(用a,b表示).

分析 根据平面向量基本定理分别求出$\overrightarrow{GN}$和$\overrightarrow{GM}$,作差即可.

解答 解:∵$\overrightarrow{AB}=a$,$\overrightarrow{AD}=b$,
∴$\overrightarrow{GN}$=$\overrightarrow{GC}$+$\overrightarrow{CN}$=$\frac{1}{2}$$\overrightarrow{b}$-$\frac{1}{3}$$\overrightarrow{a}$,
$\overrightarrow{GM}$=$\overrightarrow{GB}$+$\overrightarrow{BM}$=-$\frac{1}{2}$$\overrightarrow{b}$-$\frac{2}{3}$$\overrightarrow{a}$,
∴$\overrightarrow{GN}-\overrightarrow{GM}$
=$\frac{1}{2}$$\overrightarrow{b}$-$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\frac{2}{3}$$\overrightarrow{a}$
=$\frac{1}{3}$$\overrightarrow{a}$+$\overrightarrow{b}$,
故答案为:$\frac{1}{3}$$\overrightarrow{a}$+$\overrightarrow{b}$.

点评 本题考查了平面向量基本定理,考查平行四边形的定义,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=-|x-2|.
(1)求不等式f(x)>-|x+4|的解集;
(2)若|m-1|-|x|>f(x)对x∈R恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列各组向量中,可以作为基底的是(  )
A.$\overrightarrow{{e}_{1}}$=(0,0),$\overrightarrow{{e}_{2}}$=(1,2)B.$\overrightarrow{{e}_{1}}$=(-1,2),$\overrightarrow{{e}_{2}}$=(2,-4)
C.$\overrightarrow{{e}_{1}}$=(2,3),$\overrightarrow{{e}_{2}}$=(1,$\frac{3}{2}$)D.$\overrightarrow{{e}_{1}}$=(-1,2),$\overrightarrow{{e}_{2}}$=(-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.甲、乙两个质点同时从同一个位置出发,沿同一直线同向而行,它们的速度曲线如图所示(质点甲、乙对应的速度曲线分别为V、V),根据图中信息,以下关于这两个运动质点结论中,正确的结论序号是:①②.
①从t=0运动到t=t1,两个质点平均加速度相同;
②?t0∈[0,t1],两个质点在t=t0时有相同的加速度;
③两物体在t=t1时相遇;
④t=t2时,甲在后,乙在前.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知圆的方程是2x2+2y2-4x+6y=$\frac{3}{2}$,则此圆的半径为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将函数f(x)=cos2x的图象向右平移φ(0<φ<$\frac{π}{2}$)个单位后得到函数g(x)的图象,若对满足|f(x1)-g(x2)|=2的x1,x2,总有|x1-x2|的最小值等于$\frac{π}{6}$,则φ=(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x3-3ax2-bx,其中a,b为实数.
(1)若f(x)在点(1,2)处的切线与x轴相互平行,求a,b的值;
(2)若f(x)在区间[-1,2]上为减函数,且b=9a,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点A(2,3),B(m,1),C(n,2),若 $\overrightarrow{AB}$∥$\overrightarrow{BC}$,则m-2n=(  )
A.3B.2C.-2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\sqrt{3}$sin2x-2cos2x.
(1)求f(x)的最大值;
(2)若tanα=2$\sqrt{3}$,求f(α)的值.

查看答案和解析>>

同步练习册答案