精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=-|x-2|.
(1)求不等式f(x)>-|x+4|的解集;
(2)若|m-1|-|x|>f(x)对x∈R恒成立,求m的取值范围.

分析 (1)问题转化为|x-2|<|x+4|,两边平方解得即可;(2)问题转化为|m-1|>|x|-|x-2|,求出|x|-|x-2|的最大值是|x-x+2|=2,得到|m-1|>2,解出即可.

解答 解:(1)∵f(x)>-|x+4|,
即-|x-2|>-|x+4|,
即|x-2|<|x+4|,
即(x-2)2<(x+4)2
解得:x>-1,
故不等式的解集是{x|x>-1};
(2)若|m-1|-|x|>f(x)对x∈R恒成立,
即|m-1|>|x|-|x-2|,
而|x|-|x-2|的最大值是|x-x+2|=2,
故|m-1|>2,解得:m>3或m<-1.

点评 本题考查了解绝对值不等式问题,考查转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知数列{an}为正项数列,a1=1,且对?n∈N*,都有$\frac{{a}_{n+1}}{{a}_{n}}$-$\frac{{a}_{n}}{{a}_{n+1}}$=2($\frac{1}{{a}_{n}}$+$\frac{1}{{a}_{n+1}}$).
(1)求数列{an}的通项公式;
(2)若bn=an•2n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知m,n表示两条不同的直线,α、β表示两个不同的平面,下列命题中正确的是(  )
A.若m⊥α,m∥n,n?β,则α⊥βB.若平面α⊥β,m⊥α,则m⊥β
C.若m∥α,α∥β,则m∥βD.若直线m∥n,n?α,则m∥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1的左右焦点,G是C上一点,且满足$\frac{|G{F}_{1}|}{|G{F}_{2}|}$=9 则C的离心率的取值范围是(  )
A.(1,$\frac{\sqrt{5}}{2}$)B.(1,$\frac{\sqrt{5}}{2}$]C.(1,$\frac{5}{4}$)D.(1,$\frac{5}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用数字0,l,2,3,4,5六个数字可以组成无重复的三位数的个数为(  )
A.216B.100C.120D.180

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a>0且a≠1,函数f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$+4loga$\frac{1+x}{1-x}$,其中-1<x<1,则函数f(x)的最大值与最小值之和为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.正六棱锥底边长为1,侧棱与底面所成的角为45°,则它的斜高等于$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A(-1,1),B(1,2),C(-2,-1),D(3,4),则$\overrightarrow{AB}$在$\overrightarrow{CD}$方向上的投影为(  )
A.$\frac{{3\sqrt{2}}}{2}$B.$\frac{{3\sqrt{15}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$-\frac{{3\sqrt{15}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图为平行四边形ABCD,G为BC的中点,M、N分别为AB和CD的三等分点(M靠近A,N靠近C).$\overrightarrow{AB}=a$,$\overrightarrow{AD}=b$,则$\overrightarrow{GN}-\overrightarrow{GM}$=$\frac{1}{3}$$\overrightarrow{a}$+$\overrightarrow{b}$(用a,b表示).

查看答案和解析>>

同步练习册答案