| A. | $\overrightarrow{{e}_{1}}$=(0,0),$\overrightarrow{{e}_{2}}$=(1,2) | B. | $\overrightarrow{{e}_{1}}$=(-1,2),$\overrightarrow{{e}_{2}}$=(2,-4) | ||
| C. | $\overrightarrow{{e}_{1}}$=(2,3),$\overrightarrow{{e}_{2}}$=(1,$\frac{3}{2}$) | D. | $\overrightarrow{{e}_{1}}$=(-1,2),$\overrightarrow{{e}_{2}}$=(-2,3) |
分析 只有两向量不共线才可以作为基底,所以找哪两个向量不共线即可.
解答 解:只有两向量不共线才可作为基底:
A.$\overrightarrow{{e}_{1}}$=0$\overrightarrow{{e}_{2}}$,∴$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$共线,∴不可以作为基底;
B.$\overrightarrow{{e}_{2}}$=-2$\overrightarrow{{e}_{1}}$,∴$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$共线,∴不可以作为基底;
C. $\overrightarrow{{e}_{1}}$=2$\overrightarrow{{e}_{2}}$,∴$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$共线,∴不可以做为基底;
D.不存在λ使$\overrightarrow{{e}_{1}}$=λ$\overrightarrow{{e}_{2}}$,∴$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共线,∴可以作为基底;
故选:D.
点评 考查基底的概念,及共线向量基本定理.
科目:高中数学 来源: 题型:选择题
| A. | 若m⊥α,m∥n,n?β,则α⊥β | B. | 若平面α⊥β,m⊥α,则m⊥β | ||
| C. | 若m∥α,α∥β,则m∥β | D. | 若直线m∥n,n?α,则m∥α |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3\sqrt{2}}}{2}$ | B. | $\frac{{3\sqrt{15}}}{2}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $-\frac{{3\sqrt{15}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 2 | C. | 4 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com