| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
分析 利用三角函数的最值,求出自变量x1,x2的值,然后判断选项即可.
解答 解:因函数f(x)=cos2x的周期为π,将函数的图象向右平移φ(0<φ<$\frac{π}{2}$)个单位后得到函数g(x)的图象.
可得:g(x)=cos(2x-2φ),
若对满足|f(x1)-g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1-x2|min=$\frac{π}{6}$,
不妨x1=0,则:x2=±$\frac{π}{6}$,即g(x)在x2=±$\frac{π}{6}$,取得最小值,
由于,cos(2×$\frac{π}{6}$-2φ)=-1,此时φ=$\frac{2π}{3}$-kπ,k∈Z,不合题意0<φ<$\frac{π}{2}$,
x1=0,x2=-$\frac{π}{6}$,g(x)在x2=-$\frac{π}{6}$取得最小值,cos(2x-$\frac{π}{6}$)=-1,此时φ=$\frac{π}{3}$-kπ,k∈Z,
当φ=$\frac{π}{3}$满足题意.
故选:C.
点评 本题考查三角函数的图象平移,函数的最值以及函数的周期的应用,考查分析问题解决问题的能力,是好题,题目新颖.有一定难度,选择题,可以回代验证的方法快速解答.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9种 | B. | 10种 | C. | 12种 | D. | 24种 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,$\frac{π}{6}$],[$\frac{2π}{3}$,π] | B. | [$\frac{π}{6}$,$\frac{2π}{3}$] | C. | [0,$\frac{π}{12}$],[$\frac{7π}{12}$,π] | D. | [$\frac{π}{12}$,$\frac{7π}{12}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A>1 000和n=n+1 | B. | A>1 000和n=n+2 | C. | A≤1 000和n=n+1 | D. | A≤1 000和n=n+2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com