精英家教网 > 高中数学 > 题目详情
18.在△ABC中,若a2-b2-c2+bc=0,则A=$\frac{π}{3}$.

分析 把已知等式代入余弦定理即可求得cosA的值,进而求得A.

解答 解:∵a2-b2-c2+bc=0,
∴b2+c2-a2=bc,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.

点评 本题主要考查了余弦定理,特殊角的三角函数值在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,E,F分别是PD,PC上的点,且EF∥平面ABCD.
(1)求证:EF∥平面PAB;
(2)若三棱锥F-BCD与四棱锥P-ABCD的体积比为λ(0<λ<$\frac{1}{2}$),点G是线段BC上的一点,且平面EFG∥平面PAB,求$\frac{BG}{BC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{x-2,x>0}\\{-{x}^{2}+bx+c,x≤0}\end{array}\right.$满足f(0)=1,且f(0)+2f(-1)=0,那么函数g(x)=f(x)+x有2个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果方程x2+ky2=2表示椭圆,那么实数k的取值范围是(0,1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,是偶函数且在区间(0,+∞)上单调递减的函数是(  )
A.f(x)=$\frac{1}{|x|}$B.$f(x)={(\frac{1}{3})^x}$C.f(x)=x2+1D.f(x)=lg|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若A={x|y=log3(x-2)},B={y|y=-|x|},则A∪∁B=(  )
A.(0,+∞)B.[0,+∞)C.(2,+∞)D.[0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{2x}{{x}^{2}-1}$.
(1)求f[f(2)]的值;
(2)判断f(x)的奇偶性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设△ABC的内角A,B,C的对边分别为a,b,c,己知(c+a-b)(b+c-a)=3ab,则角C的大小为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ex,g(x)=ax2+bx+c.
(1)若f(x)的图象与g(x)的图象的一个公共点在y轴上,且在该店处两条曲线的切线相同,求b和c的值;
(2)若a=c=1,b=0,试着比较f(x)与g(x)的大小,并说明理由;
(3)若函数t(x)与函数f(x)的图象关于直线y=x对称,且直线y=g′(x)是函数t(x)图象的切线,求a+b的最小值.

查看答案和解析>>

同步练习册答案