精英家教网 > 高中数学 > 题目详情
14.某几何体的三视图(单位:cm)如图所示,其中侧视图是一个边长为2的正三角形,则这个几何体的体积为$\sqrt{3}$.

分析 几何体为四棱锥,棱锥底面为直角梯形,棱锥的高为侧视图三角形的高.

解答 解:由三视图可知几何体为四棱锥,棱锥的底面为俯视图中的直角梯形,棱锥的高为侧视图三角形的高.
∵侧视图为等边三角形,边长为2,所以侧视图三角形的高为$\sqrt{3}$,即棱锥的高为$\sqrt{3}$.
由三视图的对应关系可知俯视图中直角梯形的上下底分别是1,2,直腰为2.
∴四棱锥的体积V=$\frac{1}{3}×\frac{1}{2}×(1+2)×2×\sqrt{3}$=$\sqrt{3}$.
故答案为$\sqrt{3}$.

点评 本题考查了棱锥的三视图和结构特征,体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知圆E:(x+1)2+y2=16,点F(1,0),P是圆E上的任意一点,线段PF的垂直平分线和半径PE相交于点Q,则动点Q的轨迹方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2sinxcosx-$\sqrt{3}$cos2x.
(1)求f(x)的最小正周期和单调递增区间;
(2)当x∈$[0,\frac{π}{2}]$时,求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xOy中,直线l的方程是y=8,圆C的参数方程是$\left\{\begin{array}{l}{x=2+2cosφ}\\{y=2sinφ}\end{array}\right.$(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求直线l和圆C的极坐标方程;
(2)射线OM:θ=α(其中0<α<$\frac{π}{2}$)与圆C交于O,P两点,与直线l交于点M,直线ON:θ=α+$\frac{π}{2}$与圆C交于O,Q两点,与直线l交于点N,求$\frac{|OP|}{|OM|}•\frac{|OQ|}{|ON|}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=3sinx-log2x的零点个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如表所示:
喜欢甜品不喜欢甜品合计
南方学生402060
北方学生202040
合计6040100
(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取2人,求恰有1人喜欢甜品的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(b+d)(c+d)}$,
P(K2≥k)0.100.050.01
k2.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知命题p:x2+2x-3>0;命题q:3-x>1,若“(¬p)∧q”为真,则x的取值范围是[-3,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.(m+x)(1+x)3的展开式中x的奇数次幂项的系数之和为16,则${∫}_{-1}^{1}$xmdx=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若直线l被4x+y+6=0和3x-5y-6=0两条直线截得的线段的中点恰好是坐标原点,求直线l的方程.

查看答案和解析>>

同步练习册答案