精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=2sinxcosx-$\sqrt{3}$cos2x.
(1)求f(x)的最小正周期和单调递增区间;
(2)当x∈$[0,\frac{π}{2}]$时,求函数f(x)的最大值和最小值.

分析 (1)利用三角函数恒等变换的应用化简可得解析式f(x)=2sin(2x-$\frac{π}{3}$),利用周期公式可求最小正周期,由-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,可得解得f(x)的单调增区间.
(2)由$0≤x≤\frac{π}{2}$,可得$-\frac{π}{3}≤2x-\frac{π}{3}≤\frac{2π}{3}$,利用正弦函数的图象和性质可求函数f(x)的最大值和最小值.

解答 (本题满分为12分)
解:(1)∵f(x)=sin2x-$\sqrt{3}$cos2x=2sin(2x-$\frac{π}{3}$),…(2分)
∴T=π.…(3分)
由-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,可得解得:-$\frac{π}{12}$+kπ≤x≤$\frac{5π}{12}$+kπ,k∈Z,
∴f(x)的单调增区间为:$[{-\frac{π}{12}+kπ,\frac{5π}{12}+kπ}]$(k∈z).…(6分)
(2)∵$0≤x≤\frac{π}{2}$,
∴$-\frac{π}{3}≤2x-\frac{π}{3}≤\frac{2π}{3}$,可得:$-\frac{{\sqrt{3}}}{2}≤sin({2x-\frac{π}{3}})≤1$,
∴$f{(x)_{max}}=2,f{(x)_{min}}=-\sqrt{3}$.…(12分)

点评 本题主要考查了三角函数恒等变换的应用,三角函数的周期公式的应用,考查了正弦函数的图象和性质,考查了计算能力和数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,在菱形ABCD中,∠DAB=60°,PA⊥底面ABCD,PA=DA,E,F分别是AB、PD的中点.
(1)求证:PC⊥BD;
(2)求证:AF∥平面PEC;
(3)M为线段BC的中点,求证AF⊥平面PDM.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.命题“?x∈[0,+∞),x3+x≥0”的否定是?x∈[0,+∞),x3+x<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知空间向量$\overrightarrow{a}$=(-2,3,1),$\overrightarrow{b}$=(3,4,z),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数z等于(  )
A.-6B.-4C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,正方形O′A′C′B′的边长为1cm,它是水平放置的一个平面图形的直观图,则它的原图形面积和直观图面积之比是(  )
A.2$\sqrt{2}$B.$\frac{\sqrt{2}}{4}$C.2(1+$\sqrt{3}$)D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设f(x),g(x)是定义在[a,b]上的可导函数且f′(x)>g′(x),令F(x)=f(x)-g(x),则F(x)的最小值为F(a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=xn的图象过点(3,$\sqrt{3}$),则n=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\sqrt{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某几何体的三视图(单位:cm)如图所示,其中侧视图是一个边长为2的正三角形,则这个几何体的体积为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数y=f(x)满足f(1)=2,f′(1)=-1,则曲线g(x)=exf(x)在x=1处的切线斜率是(  )
A.-eB.eC.2eD.3e

查看答案和解析>>

同步练习册答案