精英家教网 > 高中数学 > 题目详情
2.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=acost\\ y=1+asint\end{array}\right.$(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.
(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;
(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.

分析 (Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y22,y=ρsinθ化为极坐标方程;
(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1-a2=0,则a值可求.

解答 解:(Ⅰ)由$\left\{\begin{array}{l}x=acost\\ y=1+asint\end{array}\right.$,得$\left\{\begin{array}{l}{x=acost}\\{y-1=asint}\end{array}\right.$,两式平方相加得,x2+(y-1)2=a2
∴C1为以(0,1)为圆心,以a为半径的圆.
化为一般式:x2+y2-2y+1-a2=0.①
由x2+y22,y=ρsinθ,得ρ2-2ρsinθ+1-a2=0;
(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,
∴x2+y2=4x,②
即(x-2)2+y2=4.
由C3:θ=α0,其中α0满足tanα0=2,得y=2x,
∵曲线C1与C2的公共点都在C3上,
∴y=2x为圆C1与C2的公共弦所在直线方程,
①-②得:4x-2y+1-a2=0,即为C3
∴1-a2=0,
∴a=1(a>0).

点评 本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.等差数列{an}中,a3+a4=4,a5+a7=6.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=[an],求数列{bn}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在平面直角坐标系xOy中,双曲线$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{3}$=1的焦距是2$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.记U={1,2,…,100},对数列{an}(n∈N*)和U的子集T,若T=∅,定义ST=0;若T={t1,t2,…,tk},定义ST=${a}_{{t}_{1}}$+${a}_{{t}_{2}}$+…+${a}_{{t}_{k}}$.例如:T={1,3,66}时,ST=a1+a3+a66.现设{an}(n∈N*)是公比为3的等比数列,且当T={2,4}时,ST=30.
(1)求数列{an}的通项公式;
(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:ST<ak+1
(3)设C⊆U,D⊆U,SC≥SD,求证:SC+SC∩D≥2SD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.
(Ⅰ)证明平面ABEF⊥平面EFDC;
(Ⅱ)求二面角E-BC-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(  )
A.20πB.24πC.28πD.32π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是1和3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数01234≥5
保费0.85aa1.25a1.5a1.75a2a
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数01234≥5
频数605030302010
(I)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;
(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;
(Ⅲ)求续保人本年度的平均保费估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设向量$\overrightarrow{a}$=(x,x+1),$\overrightarrow{b}$=(1,2),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x=$-\frac{2}{3}$.

查看答案和解析>>

同步练习册答案