分析 (Ⅰ)设等差数列{an}的公差为d,根据已知构造关于首项和公差方程组,解得答案;
(Ⅱ)根据bn=[an],列出数列{bn}的前10项,相加可得答案.
解答 解:(Ⅰ)设等差数列{an}的公差为d,
∵a3+a4=4,a5+a7=6.
∴$\left\{\begin{array}{l}2{a}_{1}+5d=4\\ 2{a}_{1}+10d=6\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a}_{1}=1\\ d=\frac{2}{5}\end{array}\right.$,
∴an=$\frac{2}{5}n+\frac{3}{5}$;
(Ⅱ)∵bn=[an],
∴b1=b2=b3=1,
b4=b5=2,
b6=b7=b8=3,
b9=b10=4.
故数列{bn}的前10项和S10=3×1+2×2+3×3+2×4=24.
点评 本题考查的知识点是等差数列的通项公式,等差数列的性质,难度中档.
科目:高中数学 来源: 题型:选择题
| A. | {β|β=-$\frac{5π}{6}$+2kπ,k∈Z} | B. | {β|β=$\frac{5π}{6}$+k•360°,k∈Z} | ||
| C. | {β|β=$\frac{2π}{3}$+2kπ,k∈Z} | D. | {β|β=$\frac{5π}{6}$+2kπ,k∈Z} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-2,-1,0,1,2,3} | B. | {-2,-1,0,1,2} | C. | {1,2,3} | D. | {1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|2<x<5} | B. | {x|x<4或x>5} | C. | {x|2<x<3} | D. | {x|x<2或x>5} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com