精英家教网 > 高中数学 > 题目详情

【题目】首届世界低碳经济大会近日召开,本届大会的主题为节能减排,绿色生态”.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为吨,最多为吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化碳得到可利用的化工产品价值为.

1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?

2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?

【答案】1吨;(2)每月不能获利,需要国家至少补贴元才能不亏损

【解析】

1)先表示出每吨的平均处理成本,结合基本不等式即可求得处理成本最低时每月的处理量;

2)根据题意,可得获利的函数关系式,结合二次函数性质即可确定是否能够获利.

1)当每月处理量为吨时,,每吨的平均处理成本为

当且仅当,即时等号成立,

所以每月处理量为吨时,每吨的平均处理成本最低.

2)设该单位每月获利为元,则

时,

所以该单位每月不能获利,需要国家至少补贴元才能不亏损.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆满足:①圆心在第一象限,截轴所得弦长为2;②被轴分成两段圆弧,其弧长的比为;③圆心到直线的距离为.

(Ⅰ)求圆的方程;

(Ⅱ)若点是直线上的动点,过点分别做圆的两条切线,切点分别为 ,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出两块面积相同的正三角形纸片如图,要求用其中一块剪拼成一个正三棱锥(正三棱锥的三个侧面是全等的等腰三角形)模型,另一块剪拼成一个正三棱柱(正三棱柱上、下底面是正三角形,侧面是矩形)模型,使纸片正好用完,请设计一种剪拼方法,分别标示在图(1)(2)中,并作简要说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】身体素质拓展训练中,人从竖直墙壁的顶点A沿光滑杆自由下滑到倾斜的木板上(人可看作质点),若木板的倾斜角不同,人沿着三条不同路径ABACAD滑到木板上的时间分别为t1t2t3,若已知ABACAD与板的夹角分别为70o90o105o,则(

A. t1>t2>t3 B. t1<t2<t3 C. t1=t2=t3 D. 不能确定t1t2t3之间的关系

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB为圆O的直径,点EF在圆OABEF矩形ABCD所在平面和圆O所在平面垂直已知AB=2,EF=1.

(I)求证平面DAF⊥平面CBF

(II)若BC=1,求四棱锥FABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A药店计划从甲,乙两家药厂选择一家购买100件某种中药材,为此A药店从这两家药厂提供的100件该种中药材中随机各抽取10件,以抽取的10件中药材的质量(单位:克作为样本.样本数据的茎叶图如图所示.己知A药店根据中药材的质量(单位:克)的往定性选择药厂

(1)根据样本数据,A药店应选择哪家药厂购买中药材?

(2)若将抽取的样本分布近似看作总体分布,药店与所选药厂商定中药材的购买价格如下表:

每件中药材的质量(单位:克)

购买价格(单位:元/件)

(i)估计药店所购买的件中药材的总质量;

(ii)若药店所购买的件中药材的总费用不超过元.求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,均为边长为的等边三角形.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;

(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过函数的图象上的两点轴的垂线,垂足分别为,线段与函数的图象交于点,且轴平行.

1)当时,求实数的值;

(2)当时,求的最小值;

(3)已知,若为区间内任意两个变量,且

求证:

查看答案和解析>>

同步练习册答案