精英家教网 > 高中数学 > 题目详情
6.已知直线l经过两个点A(0,4),B(3,0),则直线l的方程为(  )
A.4x+3y-12=0B.3x+4y-12=0C.4x+3y+12=0D.3x+4y+12=0

分析 由截距式可得直线l的方程.

解答 解:由截距式可得直线l的方程为:$\frac{x}{3}+\frac{y}{4}$=1,化为4x+3y-12=0.
故选:A.

点评 本题考查了截距式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow a$=(1,-2),$\overrightarrow b$=(x,4),且$\overrightarrow a$∥$\overrightarrow b$,则|$\overrightarrow a$+$\overrightarrow b$|=(  )
A.$\sqrt{5}$B.5C.$\sqrt{85}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为$\sqrt{2}$,且过点M(4,-$\sqrt{10}$).
(1)求双曲线方程;
(2)若点N(3,m)在双曲线上,求证:$\overrightarrow{NF}$1•N$\overrightarrow{F}$2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知圆的方程为x2+y2=1,则圆心到直线x+y+2=0的距离为(  )
A.1B.2C.2$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=$\overrightarrow a•\overrightarrow b$,其中$\overrightarrow{a}$=(2cosx,-$\sqrt{3}$sin2x),$\overrightarrow{b}$=(cosx,1)x∈R
(1)求f(x)的最小正周期和单调增区间;
(2)在△ABC中角A,B,C的对边分别为a,b,c且b>c,f(A)=-1,a=$\sqrt{7},\overrightarrow{AB}•\overrightarrow{AC}$=3,求b和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)是定义在R上的增函数,且对于任意的x都有f(-x)+f(x)=0恒成立,如果实数a,b满足不等式组$\left\{\begin{array}{l}{f({a}^{2}-6a+23)+f({b}^{2}-8b-2)≤0}\\{f(b+1)>f(5)}\end{array}\right.$,那么a2+b2的取值范围是(  )
A.[9,49]B.(17,49]C.[9,41]D.(17,41]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥A-BCD的正视图与俯视图如图所示,则其侧视图的面积为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知等比数列{an}中,a1•a2•…•a5=32,则a3=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,BC 为⊙O 的直径,$\widehat{AB}=\widehat{AD}$,以点 A 为切点的切线与 CD 的延长线交于点E 
(1)∠AED 是否等于90°?为什么?
(2)若 AD=2$\sqrt{5}$,ED:EA=1:2,求⊙O的半径;
(3)在(2)的条件下,求∠CAD  的正弦值.

查看答案和解析>>

同步练习册答案