精英家教网 > 高中数学 > 题目详情
16.如图所示,BC 为⊙O 的直径,$\widehat{AB}=\widehat{AD}$,以点 A 为切点的切线与 CD 的延长线交于点E 
(1)∠AED 是否等于90°?为什么?
(2)若 AD=2$\sqrt{5}$,ED:EA=1:2,求⊙O的半径;
(3)在(2)的条件下,求∠CAD  的正弦值.

分析 (1)证明△AED∽△CAB,可得结论;
(2)由题意知AB=AD=2$\sqrt{5}$,△EAD∽△ACB,即可求⊙O的半径;
(3)过 D作 DF⊥AC 于 F,在(2)的条件下,利用△CDF∽△CBA,即可求∠CAD  的正弦值.

解答 解:(1)∠AED=90°.理由如下:
连接 AB,由BC为直径,得∠BAC=90°.
又 AE切 圆O 于 A,$\widehat{AB}=\widehat{AD}$,
∴∠EAD=∠ACE=∠ACB.
又四边形 ABCD 内接于 圆O,
∴∠ADE=∠B,
∴△AED∽△CAB,
∴∠AED=∠CAB=90°;
(2)∵AD=2$\sqrt{5}$,ED:EA=1:2,∠AED=90°,
∴ED=2,EA=4.
又由题意知AB=AD=2$\sqrt{5}$,△EAD∽△ACB,
∴$\frac{AD}{BC}=\frac{ED}{AB}$,
∴BC=10,∴圆O 的半径为5.
(3)过 D作 DF⊥AC 于 F.根据(2)可求AC=4$\sqrt{5}$,
在△AEC中,可求得 CE=8,∴CD=6.
由题意知△CDF∽△CBA,
∴$\frac{DF}{AB}=\frac{CD}{CB}$,
∴DF=$\frac{6\sqrt{5}}{5}$,
∴sin∠DAC=$\frac{3}{5}$.

点评 本题考查三角形相似的判定与性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知直线l经过两个点A(0,4),B(3,0),则直线l的方程为(  )
A.4x+3y-12=0B.3x+4y-12=0C.4x+3y+12=0D.3x+4y+12=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设等差数列{an}的前n项和为Sn,已知a3=24,S11=0
(Ⅰ)求数列{an}的前n项和Sn
(Ⅱ)设bn=$\frac{{S}_{n}}{n}$,求数列{bn}前n项和Tn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,在定义域内既是奇函数又是增函数的为(  )
A.y=3xB.y=2x(-1≤x<1)
C.$y=\left\{\begin{array}{l}{x^2}+x,x>0\\{x^2}-x,x<0\end{array}\right.$D.y=2x-2-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.
(I)求f(0)的值;    (II)求证:f(x)是奇函数;
(III)当-3≤x≤3时,不等式f(x)≤2m-1恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2+2ax+2,x∈[-5,5]
(1)当a=-1时,求函数的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数
(3)已知函数y=x+$\frac{t}{x}$有如下性质:
如果常数t>0,那么该函数(0,$\sqrt{t}$]上是减函数,在[$\sqrt{t}$,+∞)上是增函数.
利用上述性质,直接写出函数g(x)=$\frac{f(x)}{x}$,x∈(0,5]的单调区间,并求值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中角A,B,C的对边分别为a,b,c,若b=4,c=2,A=60°,则此三角形外接圆的半径为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某房地产公司新建小区有A、B两种户型住宅,其中A户型住宅每套面积为100平方米,B户型住宅每套面积为80平方米.该公司准备从两种户型住宅中各拿出12套销售给内部员工,下表是这24套住宅每平方米的销售价格:(单位:万元/平方米):
房41017123456789101112
A户型2.62.72.82.82.93.22.93.13.43.33.43.3
B户型3.63.73.73.93.8.3.94.34.44.14.24.34.5
(Ⅰ)这24套住宅中,求一套B户型住宅总价格超过任意一套A户型住宅总价格的概率;
(Ⅱ)该公司决定对上述24套住房通过抽签方式销售,购房者根据自己的需求只能在其中一种户型中通过抽签方式随机获取房号,每位购房者只有一次抽签机会.
小明是第一位抽签的员工,经测算其购买能力最多为320万元,抽签后所抽得住房价格在其购买能力范围内则确定购买,否则,将放弃此次购房资格.为了使其购房成功的概率更大,他应该选择哪一种户型抽签?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{y+1≥0}\\{x+y+1≤0}\end{array}\right.$,则z=2x-y的最大值为1.

查看答案和解析>>

同步练习册答案