分析 (1)证明△AED∽△CAB,可得结论;
(2)由题意知AB=AD=2$\sqrt{5}$,△EAD∽△ACB,即可求⊙O的半径;
(3)过 D作 DF⊥AC 于 F,在(2)的条件下,利用△CDF∽△CBA,即可求∠CAD 的正弦值.
解答
解:(1)∠AED=90°.理由如下:
连接 AB,由BC为直径,得∠BAC=90°.
又 AE切 圆O 于 A,$\widehat{AB}=\widehat{AD}$,
∴∠EAD=∠ACE=∠ACB.
又四边形 ABCD 内接于 圆O,
∴∠ADE=∠B,
∴△AED∽△CAB,
∴∠AED=∠CAB=90°;
(2)∵AD=2$\sqrt{5}$,ED:EA=1:2,∠AED=90°,
∴ED=2,EA=4.
又由题意知AB=AD=2$\sqrt{5}$,△EAD∽△ACB,
∴$\frac{AD}{BC}=\frac{ED}{AB}$,
∴BC=10,∴圆O 的半径为5.
(3)过 D作 DF⊥AC 于 F.根据(2)可求AC=4$\sqrt{5}$,
在△AEC中,可求得 CE=8,∴CD=6.
由题意知△CDF∽△CBA,
∴$\frac{DF}{AB}=\frac{CD}{CB}$,
∴DF=$\frac{6\sqrt{5}}{5}$,
∴sin∠DAC=$\frac{3}{5}$.
点评 本题考查三角形相似的判定与性质,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4x+3y-12=0 | B. | 3x+4y-12=0 | C. | 4x+3y+12=0 | D. | 3x+4y+12=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=3x | B. | y=2x(-1≤x<1) | ||
| C. | $y=\left\{\begin{array}{l}{x^2}+x,x>0\\{x^2}-x,x<0\end{array}\right.$ | D. | y=2x-2-x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 房41017 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| A户型 | 2.6 | 2.7 | 2.8 | 2.8 | 2.9 | 3.2 | 2.9 | 3.1 | 3.4 | 3.3 | 3.4 | 3.3 |
| B户型 | 3.6 | 3.7 | 3.7 | 3.9 | 3.8. | 3.9 | 4.3 | 4.4 | 4.1 | 4.2 | 4.3 | 4.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com