分析 (1)e=$\sqrt{2}$,故可等轴设双曲线的方程为x2-y2=λ(λ≠2),过点M(4,-$\sqrt{10}$),可得16-10=λ,即可求双曲线方程;
(2)求出向量坐标,利用向量的数量积公式,即可证明结论.
解答 解:(1)∵e=$\sqrt{2}$,故可等轴设双曲线的方程为x2-y2=λ(λ≠2),
∵过点M(4,-$\sqrt{10}$),∴16-10=λ,
∴λ=6.
∴双曲线方程为x2-y2=6.
(2)证明:由(1)可知:在双曲线中,a=b=$\sqrt{6}$,∴c=2$\sqrt{3}$.
∴F1(-2$\sqrt{3}$,0),F2(2$\sqrt{3}$,0).
∴$\overrightarrow{N{F}_{1}}$=(-2$\sqrt{3}$-3,-m),
$\overrightarrow{N{F}_{2}}$=(2$\sqrt{3}$-3,-m).
∴$\overrightarrow{N{F}_{1}}$•$\overrightarrow{N{F}_{2}}$=+m2=-3+m2.
∵N点在双曲线上,∴9-m2=6,∴m2=3.
∴$\overrightarrow{N{F}_{1}}$•$\overrightarrow{N{F}_{2}}$=0.
点评 本题考查双曲线的方程与性质,考查向量的数量积公式,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台 | |
| B. | 有两个面平行,其他面都是平行四边形的几何体叫棱柱 | |
| C. | 棱台的底面是两个相似的正方形 | |
| D. | 棱台的侧棱延长后必交于一点 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3(\sqrt{3}+\sqrt{2})}}{4}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | $\frac{\sqrt{3}+\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4x+3y-12=0 | B. | 3x+4y-12=0 | C. | 4x+3y+12=0 | D. | 3x+4y+12=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com