精英家教网 > 高中数学 > 题目详情
△ABC的内角A、B、C所对的边分别为a,b,c.
(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.
考点:余弦定理,等差数列的通项公式,等差关系的确定
专题:三角函数的求值
分析:(Ⅰ)由a,b,c成等差数列,利用等差数列的性质得到a+c=2b,再利用正弦定理及诱导公式变形即可得证;
(Ⅱ)由a,b,c成等比数列,利用等比数列的性质列出关系式,将c=2a代入表示出b,利用余弦定理表示出cosB,将三边长代入即可求出cosB的值.
解答: 解:(Ⅰ)∵a,b,c成等差数列,
∴a+c=2b,
由正弦定理得:sinA+sinC=2sinB,
∵sinB=sin[π-(A+C)]=sin(A+C),
则sinA+sinC=2sin(A+C);
(Ⅱ)∵a,b,c成等比数列,
∴b2=ac,
将c=2a代入得:b2=2a2,即b=
2
a,
∴由余弦定理得:cosB=
a2+c2-b2
2ac
=
a2+4a2-2a2
4a2
=
3
4
点评:此题考查了余弦定理,等差、等比数列的性质,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有
 
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={x∈N*丨-1≤x≤7},集合M={2,4,6},P={3,4,5},那么集合∁U(M∪P)是(  )
A、{-1,0,1,7}
B、{1,7}
C、{1,3,7}
D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=1,a2=2,an+2=2an+1-an+2.
(Ⅰ)设bn=an+1-an,证明{bn}是等差数列;
(Ⅱ)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2|x-1|+x-1,g(x)=16x2-8x+1.记f(x)≤1的解集为M,g(x)≤4的解集为N.
(Ⅰ)求M;
(Ⅱ)当x∈M∩N时,证明:x2f(x)+x[f(x)]2
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2分别是C:
x2
a2
+
y2
b2
=1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.
(1)若直线MN的斜率为
3
4
,求C的离心率;
(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
x-y≥0
x+2y≤3
x-2y≤1
,则z=x+4y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.
(1)求C和BD;
(2)求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图的程序框图,若输入x=9,则输出y=
 

查看答案和解析>>

同步练习册答案