精英家教网 > 高中数学 > 题目详情
9.以下函数在R上是减函数的是(  )
A.y=1-x2B.$y={log_{\frac{1}{2}}}x$C.$y={x^{\frac{1}{2}}}$D.$y={(\frac{1}{3})^x}$

分析 根据基本初等函数的单调性质,对选项中的函数进行判断即可.

解答 解:对于A,函数y=1-x2,在区间(-∞,0)上是单调增函数,在区间[0,+∞)上是单调减函数,不满足题意;
对于B,函数y=${log}_{\frac{1}{2}}$x,在区间(0,+∞)上是单调减函数,不满足题意;
对于C,函数y=${x}^{\frac{1}{2}}$,在区间[0,+∞)上是单调增函数,不满足题意;
对于D,函数y=${(\frac{1}{3})}^{x}$,在定义域R是单调减函数,满足题意.
故选:D.

点评 本题考查了基本初等函数的单调性问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若圆台上底面半径为5cm,下底面半径为10cm,母线AB(点A在下底面圆周上,点B在上底面圆周上)长为20cm,从AB中点拉一根绳子绕圆台侧面转到A,则绳子最短的长度50cm.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,函数y=x2图象下方的点构成的阴影部分面积$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.给定两个命题:p:关于x的不等式ax2+x+1≤0的解集为∅;q:函数f(x)=ax3-x2+x+1在区间[1,+∞)上为减函数.如果p,q至少一个为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线y=kx-32与曲线f(x)=x3+x-c相切于点A(2,-6),则k-c=(  )
A.-4B.16C.29D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在2015年全运会上两名射击运动员甲、乙在比赛中打出如下成绩:
甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;
乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;
(1)用茎叶图表示甲、乙两人的成绩;并根据茎叶图估计他们的中位数;
(2)已知甲、乙两人成绩的方差分别为1.69与0.81,分别计算两个样本的平均数x,x和标准差S,S,并根据计算结果估计哪位运动员的成绩比较好,哪位运动员的成绩比较稳定.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点A,B的坐标分别是$(-\frac{1}{2},0)$,$(\frac{1}{2},0)$,直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的差是-1.
(1)过点M的轨迹C的方程;
(2)过原点作两条互相垂直的直线l1、l2分别交曲线C于点A,C和B,D,求四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知椭圆$\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=1({a_1}>{b_1}>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,双曲线$\frac{x^2}{a_2^2}-\frac{y^2}{b_2^2}=1({a_2}>0,{b_2}>0)$与椭圆有相同的焦点F1,F2,M是两曲线的一个公共点,若∠F1MF2=60°,则双曲线的离心率e为$\frac{2\sqrt{42}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,圆O和圆O′都经过点A和点B,PQ切圆O于点P,交圆O′于Q,M,交AB的延长线于N.若PN=2,MN=1,则MQ等于(  )
A.$\frac{7}{2}$B.3C.$\sqrt{10}$D.$2\sqrt{3}$

查看答案和解析>>

同步练习册答案