精英家教网 > 高中数学 > 题目详情
20.函数y=sin3x在($\frac{π}{3}$,0)处的切线斜率为(  )
A.-1B.1C.-3D.3

分析 求出函数的导数,由导数的几何意义,结合特殊角的三角函数值,可得切线的斜率.

解答 解:函数y=sin3x的导数为y′=3cos3x,
可得在($\frac{π}{3}$,0)处的切线斜率为3cosπ=-3,
故选:C.

点评 本题考查导数的运用:求切线的斜率,考查导数的几何意义,求出导数是解题关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知sin(-π+θ)+2cos(3π-θ)=0,则$\frac{sinθ+cosθ}{sinθ-cosθ}$=(  )
A.3B.-3C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:4x2+y2=4m2(m>0),过原点的直线与椭圆C交于A,B两点,点P是椭圆上的任意一点且直线PA,PB与坐标轴不平行.
(1)证明:直线PA的斜率与直线PB斜率之积为定值;
(2)若A,B不是椭圆C的顶点,且PA⊥AB,直线BP与x轴,y轴分别交于E,F两点.
(i)证明:直线BP的斜率与直线AF斜率之比为定值;
(ii)记△OEF的面积为S△OEF,求$\frac{{{S_{△OEF}}}}{m^2}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在三棱柱ABC-A1B1C1中,侧面ACC1A1⊥平面ABC,AB⊥AC,AA1=2$\sqrt{2}$,A1C=CA=AB=2.
(1)若D是AA1的中点,求证:CD⊥平面ABB1A1
(2)若E是侧棱BB1上的点,且$\sqrt{3}$EB1=BB1,求二面角E-A1C1-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=xsinx,则f(x)在x=$\frac{π}{2}$处的导数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在复平面内,复数z=-2i+1对应的点到原点的距离是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图1,已知梯形ABCD中,BC∥AD,BC=BE=1,AD=4,E为AD的中点,BE⊥AD.将△ABE沿BE折起到△PBE的位置,使∠PED=120°,如图2.M是棱PB上的一点(M不与P,B重合),平面DEM交PC于N.

(Ⅰ)求证:DE∥MN;
(Ⅱ)求平面PBE与平面PCD所成锐二面角的余弦值;
(Ⅲ)是否存在点M,使得平面MNDE⊥平面PCD?若存在,求出$\frac{PM}{PB}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.△ABC中,已知A(-1,2),B(3,4),C(0,3),则AB边上的高CH所在直线的方程为2x+y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在平行四边形OABC中,O为坐标原点,过点C(1,3)作CD⊥AB于点D,
(1)求CD所在直线的方程;
(2)当D(4,2)时,求△OCD外接圆的方程.

查看答案和解析>>

同步练习册答案