分析 换元t=log2x,求得0≤t≤1,化简g(x)即为h(t)=t2+4t+2,0≤t≤1,求出对称轴t=-2,可得h(t)在[0,1]为增函数,计算即可得答案.
解答 解:∵f(x)=1+log2x(1≤x≤4),
∴$\left\{\begin{array}{l}{1≤x≤4}\\{1≤{x}^{2}≤4}\end{array}\right.$,即1≤x≤2,
∵f(x)=1+log2x(1≤x≤4),
g(x)=f2(x)+f(x2)=(1+log2x)2+1+2log2x,
∴g(x)=(log2x)2+4log2x+2,1≤x≤2
设t=log2x,则h(t)=t2+4t+2,0≤t≤1,
∵对称轴t=-2,h(t)在[0,1]为增函数,
∴g(x)的最小值为h(0)=2,最大值为h(1)=7
则g(x)max-g(x)min=7-2=5.
故答案为:5.
点评 本题考查函数的最值的求法,注意运用换元法转化为二次函数求值域问题,注意自变量的范围,同时考查对数函数的单调性的运用,属于中档题和易错题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①②③ | B. | ②③ | C. | ①③④ | D. | ①②③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分 | ||
| C. | 充要条件 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{20}$ | B. | $\frac{1}{10}$ | C. | 10 | D. | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| X | 1 | 2 | 3 | 4 |
| Y | 51 | 48 | 45 | 42 |
| Y | 51 | 48 | 45 | 42 |
| 频数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com