精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为梯形,AB∥DC,∠ABC=90°,且PA=AB=BC=
1
2
CD,EB=
1
2
PE.
(1)求证:PD∥平面AEC.
(2)求二面角A-CE-P的余弦值.
考点:用空间向量求平面间的夹角,直线与平面平行的判定,与二面角有关的立体几何综合题
专题:综合题,空间位置关系与距离,空间角
分析:(1)由已知条件,推导出EM∥PD,利用直线与平面平行的判定定理能证明PD∥面EAC.
(2)以A为坐标原点,分别以AB,AP为y轴,Z轴建立空间直角坐标系,求出平面EAC的一个法向量,平面PBC的一个法向量,利用向量的夹角公式,即可得出结论.
解答: (1)证明:连结BD,交AC于点M,连结EM,
∵AB∥DC,AB=
1
2
CD,
BM
MD
=
AB
CD
=
1
2
…(1分)
又∵
BE
PE
=
1
2
,∴
BM
MD
=
BE
PE
       …(2分)
∴在△BPD中,EM∥PD.
∵PD不包含于平面EAC,EM?平面EAC
∴PD∥面EAC …(5分)
(2)解:由已知可以A为坐标原点,分别以AB,AP为y轴,Z轴建立空间直角坐标系,
设PA=AB=BC=a,则A(0,0,0),C(a,a,0),B(0,a,0),P(0,0,a),E(0,
2a
3
a
3


n1
=(x,y,1)为平面EAC的一个法向量,
ax+ay=0
2ay
3
+
a
3
=0

解得x=
1
2
,y=-
1
2
,∴
n1
=(
1
2
,-
1
2
,1).        …(9分)
同理可得平面PBC的一个法向量
n2
=(0,1,1)…(11分)
∴cos<
n1
n2
>=
n1
n2
|
n1
||
n2
|
=
3
6
   …(13分)
∴二面角A-CE-P的余弦值为
3
6
.  …(14分)
点评:本题考查直线与平面平行的证明,考查平面与平面所成角的应用,解题时要注意等价转化思想和向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,PA,PB是圆O的两条切线,A,B是切点,C是劣弧AB(不包括端点)上一点,直线PC交圆O于另一点D,Q在弦CD上,且∠DAQ=∠PBC.求证:
(1)
BD
AD
=
BC
AC

(2)△ADQ∽△DBQ.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱柱ABCD-A1B1C1D1中,侧面ADD1A1⊥底面ABCD,D1A=D1D=
2
,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(Ⅰ)求证:A1O∥平面AB1C;
(Ⅱ)求锐二面角B1-AC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式x2-2ax+2>0在x∈(-1,2)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)经过点T(
2
,-
6
2
)
,其离心率为
1
2
,右顶点为A,右焦点为F(c,0),直线x=
a2
c
与x轴交于B,过点F的直线l与椭圆交于不同的两点M、N,点P为点M关于直线x=
a2
c
的对称点.
(1)求椭圆C的方程;
(2)求证:N、B、P三点共线;
(3)求△BNM的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的直观图和三视图如图所示,其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.

(1)证明:面BCN⊥面C1NB1
(2)求平面CNB1与平面C1NB1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sin(2x+
π
6
),sinx),
n
=(1,sinx),f(x)=
m
n
-
1
2

(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=2
3
f(
A
2
)=
1
2
,若
3
sin(A+C)=2cosC,求b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(Ⅰ)证明:AB⊥A1C;
(Ⅱ)若AB=CB=2,A1C=
6
,求二面角B-AC=A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆内接△ABC的角平分线CD延长后交圆于一点E,ED=1,DC=4,BD=2,则AD=
 
;EB=
 

查看答案和解析>>

同步练习册答案