精英家教网 > 高中数学 > 题目详情
如图,圆内接△ABC的角平分线CD延长后交圆于一点E,ED=1,DC=4,BD=2,则AD=
 
;EB=
 
考点:与圆有关的比例线段
专题:计算题,直线与圆
分析:根据相交弦定理,结合题中数据算出AD=2.再由CE平分∠ACB可得△EBD∽△ECB,利用比例线段加以计算,即可算出EB的长.
解答: 解:∵ED=1,DC=4,BD=2,
∴根据相交弦定理,得AD•BD=CD•ED,即AD•2=4•1,解得AD=2.
又∵CE平分∠ACB,可得∠EBD=∠ECB=∠ACD
∴△EBD∽△ECB,可得
EB
EC
=
ED
EB
,即
EB
5
=
1
EB
,解之得EB=
5

故答案为:2,
5
点评:本题给出圆满足的条件,求线段长.着重考查了相交弦定理、相似三角形的判定与性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为梯形,AB∥DC,∠ABC=90°,且PA=AB=BC=
1
2
CD,EB=
1
2
PE.
(1)求证:PD∥平面AEC.
(2)求二面角A-CE-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱柱ABC-A1B1C1中,AA1=AB=2.
(Ⅰ)求直线AB1与平面AA1C1C所成角的正弦值;
(Ⅱ)在线段AA1上是否存在点D?使得二面角B1-DC-C1的大小为60°,若存在,求出AD的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ABC内接于圆O,点D在OC的延长线上,AD是圆O的切线,若∠OAC=60°,AC=1,则AD的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=3x-
2
x
在[1,2]上的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式(k-1)x2-2(k-1)x+3(k+1)>0对于任何x∈R都成立,则k∈
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1中,A1B与平面BB1D1D所成的角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0),过其焦点且斜率为-1的直线交抛物线于A、B两点,若线段AB的中点的纵坐标为-2,则该抛物线的准线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

由0,1,2,3,4这5个数字组成没有重复数字且个位上的数字不能为1的3位数共有(  )
A、28个B、36个
C、39个D、42个

查看答案和解析>>

同步练习册答案