精英家教网 > 高中数学 > 题目详情
3.设f(x)=ex,f(x)=g(x)-h(x),且g(x)为偶函数,h(x)为奇函数,若存在实数m,当x∈[-1,1]时,不等式mg(x)+h(x)≥0成立,则m的最小值为1.

分析 由F(x)=g(x)+h(x)及g(x),h(x)的奇偶性可求得g(x),h(x),进而可把mg(x)+h(x)≥0表示出来,分离出参数后,求函数的最值问题即可解决.

解答 解:由f(x)=g(x)-h(x),即ex=g(x)-h(x)①,得e-x=g(-x)-h(-x),
又g(x),h(x)分别为偶函数、奇函数,所以e-x=g(x)+h(x)②,
联立①②解得,g(x)=$\frac{1}{2}$(ex+e-x),h(x)=$\frac{1}{2}$(ex-e-x).
mg(x)+h(x)≥0,即m•$\frac{1}{2}$(ex+e-x)+$\frac{1}{2}$(ex-e-x)≥0,也即m≥$\frac{{e}^{-x}-{e}^{x}}{{e}^{x}+{e}^{-x}}$,即m≥1-$\frac{2}{1+{e}^{-2x}}$
∵1-$\frac{2}{1+{e}^{-2x}}$<1,∴m≥1.
∴m的最小值为1.
故答案为:1

点评 本题考查函数的奇偶性、单调性及函数恒成立问题,考查学生综合运用所学知识分析问题解决问题的能力,本题综合性强,难度大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知双曲线C1:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线为x+2y=0,且点(2,$\sqrt{2}$)在双曲线C1上.
(1)求双曲线C1的标准方程;
(2)设抛物线C2:x2=2py(p>0)的焦点F是双曲线C1的一个顶点,过点P(0,t)(t>0)任意作一条直线交抛物线于两点A,B,直线AF,BF与抛物线的另一交点分别为M,N.若直线MN的斜率为k1,直线AB的斜率为k2.问:是否存在实数t,使得k1=2k2恒成立?若存在,求t的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若不等式3x2+y2≥mx(x+y)对于?x,y∈R恒成立,则实数m的取值范围是[-6,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=x2-2klnx(k>0).
(Ⅰ)当k=4时,求函数f(x)的单调区间和极值;
(Ⅱ)试讨论函数f(x)在区间(1,$\sqrt{e}$]上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)=ex,f(x)=g(x)-h(x),且g(x)为偶函数,h(x)为奇函数,若存在实数m,当x∈[-1,1]时,不等式mg(x)+h(x)≥0成立,则m的最小值为(  )
A.$\frac{{e}^{2}-1}{{e}^{2}+1}$B.$\frac{2}{{e}^{2}+1}$C.$\frac{{e}^{2}+1}{{e}^{2}-1}$D.$\frac{1-{e}^{2}}{1+{e}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设a=lg2,b=20.5,$c=cos\frac{3}{4}π$,则a,b,c按由小到大的顺序是c<a<b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)左、右焦点分别为F1,F2,A(2,0)是椭圆的右顶点,过F2且垂直于x轴的直线交椭圆于P,Q两点,且|PQ|=3;
(1)求椭圆的方程;
(2)若直线l与椭圆交于两点M,N(M,N不同于点A),若$\overrightarrow{AM}$•$\overrightarrow{AN}$=0,$\overrightarrow{MT}$=$\overrightarrow{TN}$;
①求证:直线l过定点;并求出定点坐标;
②求直线AT的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=sinωx+$\sqrt{3}$cosωx+1(ω>0)的最小正周期为π,当x∈[m,n]时,f(x)至少有5个零点,则n-m的最小值为2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数f(x)=sin2x+$\sqrt{3}$cos2x图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将图象上所有点向右平移$\frac{π}{6}$个单位长度,得到函数g (x)的图象,则g(x)图象的一条对称轴方程是(  )
A.x=一$\frac{π}{6}$B.x=$\frac{π}{6}$C.x=$\frac{24π}{25}$D.x=$\frac{π}{3}$

查看答案和解析>>

同步练习册答案