精英家教网 > 高中数学 > 题目详情
已知斜率为1的直线l,过椭圆
x2
3
+
y2
2
=1的右焦点F2,交椭圆于A,B两点,求弦长AB和△ABF1的面积.
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:设A(x1,y1),B(x2,y2).把直线l的方程y=x-1与椭圆方程联立可得根与系数的关系,再利用弦长公式、点到直线的距离公式、三角形的面积计算公式即可得出.
解答: 解:设A(x1,y1),B(x2,y2).
由椭圆
x2
3
+
y2
2
=1可得右焦点F2(1,0),左焦点F1(-1,0).
∴直线l的方程为y=x-1.
联立
y=x-1
2x2+3y2=6
,化为5x2-6x-3=0.
∴x1+x2=
6
5
,x1x2=-
3
5

∴|AB|=
(1+1)[(x1+x2)2-4x1x2]
=
2×[(
6
5
)2-4×(-
3
5
)]
=
8
3
5

F1点到直线AB的距离d=
2
2
=
2

∴△ABF1的面积=
1
2
•d•|AB|
=
1
2
×
2
×
8
3
5
=
4
6
5

∴弦长|AB|=
8
3
5
,△ABF1的面积为
4
6
5
点评:本题考查了直线与椭圆相交问题转化为方程联立可得根与系数的关系、弦长公式、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+a3=-8,a2+a4=-14.
(1)求数列{an}的通项公式;
(2)设数列{an+bn}是首项为1,公比为c的等比数列,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

向量
AB
=(7,-5),将
AB
按向量
a
=(3,6)平移后得向量
A′B′
,则
A′B′
的坐标形式为(  )
A、(10,1)
B、(4,-11)
C、(7,-5)
D、(3,6)

查看答案和解析>>

科目:高中数学 来源: 题型:

若A(2,-2),B(4,-1),C(x,-3)三点共线,则x的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=sin2x+2sinxcosx+3cos2x,求函数的单调递增区间和最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2
3
x
+
1
3
x
-m
)的值域为R,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

平行四边形ABCD中AB=1,AD=2,∠DAB=60°,设
AB
=
a
AD
=
b

(1)把
AC
BD
a
b
向量来表示;
(2)求
AB
AC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x),满足f(x-4)=-f(x),且在区间[0,2]上是增函数,设a=f(-25),b=f(11),c=f(80),则a,b,c的大小关系是(  )
A、c<b<a
B、b<a<c
C、b<c<a
D、a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:

下列4个命题:
①“如果x+y=0,则x、y互为相反数”的逆命题;
②“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ(k∈Z)”;
③在△ABC中,“A>30°”是“sinA>
1
2
”的充分不必要条件;
④“如果x2+x-6≥0,则x>2”的否命题,
其中真命题的序号是
 

查看答案和解析>>

同步练习册答案