精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
4
+
y2
9
=1和动直线y=
3
2
x+m.
(1)当动直线与椭圆相交时,求m取值范围;
(2)当动直线与椭圆相交时,证明动直线被椭圆截得的线段的中点在一条直线上.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)把直线y=
3
2
x+m
代入椭圆方程
x2
4
+
y2
9
=1
,得9x2+6mx+2m2-18=0,由此利用根的判别式能求出动直线与椭圆相交时,m取值范围.
(2)设直线与椭圆相交得到线段AB,设线段AB的中点为M(x,y),x=
x1+x2
2
=-
m
3
,点M在直线y=
3
2
x+m
上,二者联立能证明动直线被椭圆截得的线段的中点在一条直线3x+2y=0上.
解答: (1)解:把直线y=
3
2
x+m
代入椭圆方程
x2
4
+
y2
9
=1
化简,
得9x2+6mx+2m2-18=0,
△=36m2-36(2m2-18),
∵动直线与椭圆相交,
∴△>0,解得-3
2
<m<3
2

∴动直线与椭圆相交时,m取值范围是(-3
2
,3
2
).
(2)证明:设直线与椭圆相交得到线段AB,
并设线段AB的中点为M(x,y),
设A(x1,y1),B(x2,y2),则x1,x2是方程9x2+6mx+2m2-18=0的根,
∴x=
x1+x2
2
=-
m
3

∵点M在直线y=
3
2
x+m
上,
与x=-
m
3
联立,消去m,得3x+2y=0.
∴动直线被椭圆截得的线段的中点在一条直线3x+2y=0上.
点评:本题考查实数的取值范围的求法,考查动直线被椭圆截得的线段的中点在一条直线上的证明,解题时要认真审题,注意根的判别式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下命题
①若cosαcosβ=1,则sin(α+β)=0;
②已知直线x=m与函数f(x)=sinx,g(x)=sin(
π
2
-x)的图象分别交于M,N两点,则|MN|的最大值为
2

③若A,B是△ABC的两内角,如果A>B,则sinA>sinB;
④若A,B是锐角△ABC的两内角,则sinA>cosB.
其中正确的有(  )个.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

设首项为a1,公差为d的等差数列{an}的前n项和为Sn.已知a7=-2,S5=30.
(Ⅰ)求a1及d;
(Ⅱ)若数列{bn}满足an=
b1+2b2+3b3+…+nbn
n2
(n∈N*),求数列{bn}的通项公式,并bn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线顶点在坐标原点,焦点与椭圆
x2
5
+
y2
4
=1的右焦点F重合,过点F斜率为2
2
的直线与抛物线交于A,B两点.
(Ⅰ)求抛物线的方程;
(Ⅱ)求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

极坐标系中,已知点A,B的极坐标分别为(1,0),(4,0),点P是平面内一动点,且|PB|=2|PA|,动点P的轨迹为曲线C.
(Ⅰ)求曲线C的极坐标方程;
(Ⅱ)以极点为直角坐标系原点,极轴为x正半轴建立直角坐标系xOy,设点M(x,y)在曲线C上移动,求式子3x-4y+5的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公园的门票规定为每人5元,团体票40元一张,每张团体票最多可入园10人.
(1)现有三个单位,游园人数分别为6,8,9.这三个单位分别怎样买门票使总门票费最省?
(2)若三个单位的游园人数分别是16,18和19,又分别怎样买门票使总门票费最省?
(3)若游园人数为x人,你能找出一般买门票最省钱的规律吗?

查看答案和解析>>

科目:高中数学 来源: 题型:

巳知函数f(x)=
1
3
ax2-bx-1nx,其中a,b∈R.
(Ⅰ)当a=3,b=-1时,求函数f(x)的最小值;
(Ⅱ)若曲线y=f(x)在点(e,f(e)处的切线方程为2x-3y-e=0(e=2.71828…为自然对数的底数),求a,b的值;
(Ⅲ)当a>0,且a为常数时,若函数h(x)=x[f(x)+1nx]对任意的x1>x2≥4,总有
h(x1)-h(x2)
x1-x2
>-1成立,试用a表示出b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读下面材料:根据两角和与差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ----------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=B有α=
A+B
2
,β=
A-B
2
代入③得 sinA+sinB=2sin
A+B
2
cos
A-B
2

(1)利用上述结论,试求sin15°+sin75°的值.
(2)类比上述推证方法,根据两角和与差的余弦公式,证明:cosA-cosB=-2sin
A+B
2
sin
A-B
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn},其中a1=
1
2
,数列{an}的前n项和为Sn=n2an(n∈N*),数列{bn}满足b1=2,bn+1=2bn
(1)求数列{an}和{bn}的通项公式;
(2)是否存在自然数m,使得对任意n∈N*,n≥2,有1+
1
b1
+
1
b2
+…+
1
bn-1
m-8
4
恒成立?若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案