精英家教网 > 高中数学 > 题目详情
18.设集合M={x|x2-$\frac{x}{2}$>0},N={x|lgx≤0},则M∩N=(  )
A.[0,1]B.(0,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.($\frac{1}{2}$,1]

分析 求出M中不等式的解集确定出M,求出N中x的范围确定出N,找出M与N的交集即可.

解答 解:由M中不等式变形得:x(x-$\frac{1}{2}$)>0,解得:x<0或x>$\frac{1}{2}$,即M=(-∞,0)∪($\frac{1}{2}$,+∞),
由N中lgx≤0,得到0<x≤1,即N=(0,1],
则M∩N=($\frac{1}{2}$,1]
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知α为锐角,cosα=$\frac{1}{3}$,则sin($\frac{π}{4}$-α)=$\frac{\sqrt{2}-4}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设Sn,Tn,分别为数列{an},{bn}的前n项和,64Sn=72an-27,(8n+1)an-bn=9n+2,则当n=26时,Tn最小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=2sin(2x+φ)+1(|φ|<$\frac{π}{2}$),若f(x)<1,对x∈(-$\frac{π}{3}$,-$\frac{π}{12}$)恒成立,则f($\frac{π}{4}$)的最小值是(  )
A.1B.2C.-1D.-$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知x∈(0,π),sin($\frac{π}{3}$-x)=cos2($\frac{x}{2}$+$\frac{π}{4}$),则tanx等于(  )
A.$\frac{1}{2}$B.-2C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2sinωx(0<ω<3)在[-$\frac{π}{6}$,0]上的最小值为-$\sqrt{3}$,当把f(x)的图象上所有的点向右平移$\frac{π}{3}$个单位后,得到函数g(x)的图象.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)在△ABC中,角A,B,C对应的边分别是a,b,c,若函数g(x)在y轴右侧的第一个零点恰为A,a=5,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.甲、乙两市各五个镇民政局在2016年2月14日当天领取结婚证新人的对数如茎叶图所示,已知甲市的数据的中位数为145,乙市的数据的平均数为145,则m+n=10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知一个圆锥内接于球O(圆锥的底面圆周及顶点均在球面上),若球的表面积为100π,圆锥的高是底面半径的2倍,则圆锥的高为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,过抛物线x2=4y的对称轴上一点P(0,m)(m>0)作直线l1,l1与抛物线交于A,B两点.
(Ⅰ)若$\overrightarrow{OA}•\overrightarrow{OB}$<0(O为坐标原点),求实数m的取值范围;
(Ⅱ)过点P且与l1垂直的直线l2与抛物线交于C,D两点,设AB,CD的中点分别为M,N,求证:直线MN必过定点,并求出该定点坐标(用m表示).

查看答案和解析>>

同步练习册答案