精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=2sin(2x+φ)+1(|φ|<$\frac{π}{2}$),若f(x)<1,对x∈(-$\frac{π}{3}$,-$\frac{π}{12}$)恒成立,则f($\frac{π}{4}$)的最小值是(  )
A.1B.2C.-1D.-$\sqrt{3}$+1

分析 根据f(x)<1得出-π+2kπ<2x+φ<2kπ,k∈Z;再根据x∈(-$\frac{π}{3}$,-$\frac{π}{12}$)得出-$\frac{2π}{3}$+φ<2x+φ<-$\frac{π}{6}$+φ;
由|φ|<$\frac{π}{2}$求出-$\frac{π}{3}$≤φ≤$\frac{π}{6}$,从而求出f($\frac{π}{4}$)的最小值.

解答 解:∵函数f(x)=2sin(2x+φ)+1<1,
∴sin(2x+φ)<0,
∴-π+2kπ<2x+φ<2kπ,k∈Z;
又x∈(-$\frac{π}{3}$,-$\frac{π}{12}$),
∴-$\frac{2π}{3}$<2x<-$\frac{π}{6}$,
∴-$\frac{2π}{3}$+φ<2x+φ<-$\frac{π}{6}$+φ;
又∵|φ|<$\frac{π}{2}$,
∴$\left\{\begin{array}{l}{-\frac{2π}{3}+φ≥-π}\\{-\frac{π}{6}+φ≤0}\end{array}\right.$,
∴-$\frac{π}{3}$≤φ≤$\frac{π}{6}$,
∴$\frac{π}{6}$≤2×$\frac{π}{4}$+φ≤$\frac{2π}{3}$,
∴$\frac{1}{2}$≤sin(2×$\frac{π}{4}$+φ)≤1,
∴2≤2sin(2×$\frac{π}{4}$+φ)+1≤3,
∴f($\frac{π}{4}$)的最小值是2.
故选:B.

点评 本题考查了正弦函数的图象与性质的应用问题,解题的关键是求出φ的取值范围,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知f(x)=2x+2-x,f(m)=3,且m>0,若a=f(2m),b=2f(m),c=f(m+2),则a,b,c的大小关系为(  )
A.c<b<aB.a<c<bC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\sqrt{a-{a^x}}$(a>0,a≠1)的定义域和值域都是[0,1],loga$\frac{5}{6}$-${log_{\sqrt{a}}}\sqrt{\frac{5}{48}}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={1,2,3,4,5,6},集合B={1,3,5},从集合A中随机选取一个数a,从集合B中随机选取一个数b,则b>a的概率为(  )
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=x2-2bx+b2-1在区间[0,1]上恰有一个零点,则b的取值范围是(  )
A.[-1,1]B.[-2,2]C.[-2,-1]∪[0,1]D.[-1,0]∪[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知复数z满足z=$\frac{{5i}^{5}}{2{-i}^{3}}$-3i,则复数z在复平面上对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合M={x|x2-$\frac{x}{2}$>0},N={x|lgx≤0},则M∩N=(  )
A.[0,1]B.(0,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.($\frac{1}{2}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折的过程中(  )
A.存在某个位置,使得直线AB和直线CD垂直
B.存在某个位置,使得直线AC和直线BD垂直
C.存在某个位置,使得直线AD和直线BC垂直
D.无论翻折到什么位置,以上三组直线均不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设向量$\overrightarrow{a}$=(cosα,-$\frac{\sqrt{2}}{2}$)的模为$\frac{\sqrt{3}}{2}$,则cos2α=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{1}{4}$

查看答案和解析>>

同步练习册答案