精英家教网 > 高中数学 > 题目详情
14.已知集合A={1,2,3,4,5,6},集合B={1,3,5},从集合A中随机选取一个数a,从集合B中随机选取一个数b,则b>a的概率为(  )
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 先求出基本事件总数n=6×3=18,再用列举法求出b>a包含的基本事件个数由此能求出b>a的概率.

解答 解:集合A={1,2,3,4,5,6},集合B={1,3,5},从集合A中随机选取一个数a,从集合B中随机选取一个数b,
基本事件总数n=6×3=18,
∵b>a,
∴b=1时,满足条件的a不存在,
b=3时,满足条件的a为1或2,
b=5时,满足条件的a为1,2,3,4,
∴b>a包含的基本事件个数为m=6,
∴b>a的概率p=$\frac{m}{n}$=$\frac{6}{18}$=$\frac{1}{3}$.
故选:C.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.为了研究某校的高三市三模的文科数学成绩,现随机抽取了60名学生的数学成绩进行分析,现将成绩按如下方式分为6组,第一组[80,90),第二组[90,100),…,第六组[130,140),得到如图所示的频率分布直方图.
(1)求频率分布直方图中a的值;
(2)估计该校高三年级文科数学成绩的众数和平均成绩(同一组中的数据用该组区间的中点值作代表);
(3)从成绩在[110,130)的同学中用分层抽样的方法抽取5位同学,并从这5位同学中任选2人跟数学老师参与信息反馈,求选中2位数学成绩不在同一组的同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦点为F,上顶点为B,圆O以椭圆C的中心为圆心,半径等于线段BF的长.
(1)求圆O的标准方程;
(2)过F的直线L与圆O交于A,B两点,问圆O上是否存在点P满足条件$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$;若存在,请求出直线L的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在区间(-∞,t]上存在x,使得不等式x2-4x+t≤0成立,则实数t的取值范围是[0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设Sn,Tn,分别为数列{an},{bn}的前n项和,64Sn=72an-27,(8n+1)an-bn=9n+2,则当n=26时,Tn最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,内角A,B,C所对的边分别是a,b,c,且满足bc=5,cos$\frac{A}{2}$=$\frac{3\sqrt{10}}{10}$.
(Ⅰ)求△ABC的面积;
(Ⅱ)若sinB=5sinC,求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=2sin(2x+φ)+1(|φ|<$\frac{π}{2}$),若f(x)<1,对x∈(-$\frac{π}{3}$,-$\frac{π}{12}$)恒成立,则f($\frac{π}{4}$)的最小值是(  )
A.1B.2C.-1D.-$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2sinωx(0<ω<3)在[-$\frac{π}{6}$,0]上的最小值为-$\sqrt{3}$,当把f(x)的图象上所有的点向右平移$\frac{π}{3}$个单位后,得到函数g(x)的图象.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)在△ABC中,角A,B,C对应的边分别是a,b,c,若函数g(x)在y轴右侧的第一个零点恰为A,a=5,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知抛物线y2=2px(p>0)的焦点为F,准线为l,过点F的直线交抛物线于A,B两点,过点A作准线l的垂线,垂足为E,当A点的坐标为(3,y1)时,△AEF为正三角形,则此时△AEF的面积为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4\sqrt{3}}{3}$C.2$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

同步练习册答案