精英家教网 > 高中数学 > 题目详情
8.已知抛物线y2=2px(p>0)的焦点为F,准线为l,过点F的直线交抛物线于A,B两点,过点A作准线l的垂线,垂足为E,当A点的坐标为(3,y1)时,△AEF为正三角形,则此时△AEF的面积为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4\sqrt{3}}{3}$C.2$\sqrt{3}$D.4$\sqrt{3}$

分析 根据抛物线的性质和正三角形的性质计算p,得出三角形的边长,即可计算三角形的面积.

解答 解:抛物线的焦点为F($\frac{p}{2}$,0),准线方程为x=-$\frac{p}{2}$
∵△AEF为正三角形,∴3+$\frac{p}{2}$=2(3-$\frac{p}{2}$),解得p=2.
∴AE=4,
∴S△AEF=$\frac{1}{2}×4×4×sin60°$=4$\sqrt{3}$.
故选:D.

点评 本题考查了抛物线的性质,三角形的面积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知集合A={1,2,3,4,5,6},集合B={1,3,5},从集合A中随机选取一个数a,从集合B中随机选取一个数b,则b>a的概率为(  )
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折的过程中(  )
A.存在某个位置,使得直线AB和直线CD垂直
B.存在某个位置,使得直线AC和直线BD垂直
C.存在某个位置,使得直线AD和直线BC垂直
D.无论翻折到什么位置,以上三组直线均不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.采用随机模拟实验估计抛掷一枚硬币三次恰有两次正面朝上的概率;由计算机产生随机数0或1,其中1表示正面朝上,0表示反面朝上,每三个随机数作为一组,代表投掷三次的结果,已知随机模拟实验产生了如下20组随机数:
101  111  010  101    100   001   101   111 110   000
011    001   010    100    000    101   101   010  011   001
由此估计抛掷一枚硬币三次恰有两次正面朝上的概率是0.4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1( a>b>0)的一个焦点(-3,0),离心率e=$\frac{\sqrt{3}}{2}$
(1)求椭圆C的方程;
(2)求过点(3,0)且斜率为l的直线被椭圆C所截线段得中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.曲线y=2cos(x+$\frac{π}{4}$)cos(x-$\frac{π}{4}$)和直线y=$\frac{1}{2}$在y轴右侧的交点的横坐标按从小到大的顺序依次记为P1,P2,P3,…,则|P3P7|=(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设向量$\overrightarrow{a}$=(cosα,-$\frac{\sqrt{2}}{2}$)的模为$\frac{\sqrt{3}}{2}$,则cos2α=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若sinα=$\frac{3}{5}$且α是第二象限角,则tan(α-$\frac{π}{4}$)=-7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sin(x-$\frac{3π}{2}$)sinx-$\sqrt{3}$cos2x,x∈R.
(1)求函数f(x)的最小正周期和最大值;
(2)求函数f(x)在[$\frac{π}{6}$,$\frac{2π}{3}$]上的单调区间.

查看答案和解析>>

同步练习册答案