精英家教网 > 高中数学 > 题目详情
2.在区间(-∞,t]上存在x,使得不等式x2-4x+t≤0成立,则实数t的取值范围是[0,4].

分析 根据不等式x2-4x+t≤0成立,△≥0求出t≤4①;再根据x∈(-∞,t],不等式x2-4x+t≤0成立,得x≤t≤4x-x2,求出0≤x≤3,得t≥0②;由此求出t的取值范围.

解答 解:∵不等式x2-4x+t≤0成立,
∴△=(-4)2-4t≥0,
解得t≤4①;
又x∈(-∞,t],不等式x2-4x+t≤0成立,
∴x≤t≤4x-x2
即x≤4x-x2
解得0≤x≤3,
∴t≥0②;
综上,实数t的取值范围是[0,4].
故答案为:[0,4].

点评 本题考查了不等式的应用问题,也考查了等价转化思想的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a-b+c)=-ac,AB=$\sqrt{2}$,A的角平分线AD=$\sqrt{3}$.
(1)求角B;
(2)边AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知{an}为等差数列,Sn为其前n项和,若a2+a8=16,a4=7,则S20=(  )
A.240B.264C.270D.320

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.不等式组$\left\{\begin{array}{l}{x-y≤0}\\{x+2y≤12}\\{x≥0}\end{array}\right.$表示的平面区域的整点(即横、纵坐标均为整数的点)的总数是(  )
A.23B.21C.19D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\sqrt{a-{a^x}}$(a>0,a≠1)的定义域和值域都是[0,1],loga$\frac{5}{6}$-${log_{\sqrt{a}}}\sqrt{\frac{5}{48}}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知定义在R上的偶函数f(x)在[0,+∞)上递减,若不等式f(-ax+x3+1)+f(ax-x3-1)≥2f(1)对x∈(0,$\sqrt{2}$]恒成立,则实数a的取值范围为(  )
A.[2,4]B.[2,+∞)C.[3,4]D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={1,2,3,4,5,6},集合B={1,3,5},从集合A中随机选取一个数a,从集合B中随机选取一个数b,则b>a的概率为(  )
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知复数z满足z=$\frac{{5i}^{5}}{2{-i}^{3}}$-3i,则复数z在复平面上对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.采用随机模拟实验估计抛掷一枚硬币三次恰有两次正面朝上的概率;由计算机产生随机数0或1,其中1表示正面朝上,0表示反面朝上,每三个随机数作为一组,代表投掷三次的结果,已知随机模拟实验产生了如下20组随机数:
101  111  010  101    100   001   101   111 110   000
011    001   010    100    000    101   101   010  011   001
由此估计抛掷一枚硬币三次恰有两次正面朝上的概率是0.4.

查看答案和解析>>

同步练习册答案