精英家教网 > 高中数学 > 题目详情
7.已知定义在R上的偶函数f(x)在[0,+∞)上递减,若不等式f(-ax+x3+1)+f(ax-x3-1)≥2f(1)对x∈(0,$\sqrt{2}$]恒成立,则实数a的取值范围为(  )
A.[2,4]B.[2,+∞)C.[3,4]D.[2,3]

分析 由题意可得-1≤-ax+x3+1≤1对x∈(0,$\sqrt{2}$]恒成立,即 x∈(0,$\sqrt{2}$]时,a≤x2+$\frac{2}{x}$ 和 a≥x2同时恒成立.利用导数求得x2+$\frac{2}{x}$ 的最小值,再求得x2的最大值,可得a的范围.

解答 解:由题意可得定义在R上的偶函数f(x)在[0,+∞)上递减,f(x)在(-∞,0]上递增,
且偶函数f(x)的图象关于y轴对称.
∵不等式f(-ax+x3+1)+f(ax-x3-1)≥2f(1)对x∈(0,$\sqrt{2}$]恒成立,f(-ax+x3+1)=f(ax-x3-1),
∴f(-ax+x3+1)≥f(1)对x∈(0,$\sqrt{2}$]恒成立,
∴-1≤-ax+x3+1≤1对x∈(0,$\sqrt{2}$]恒成立,
即 x∈(0,$\sqrt{2}$]时,a≤x2+$\frac{2}{x}$ 和 a≥x2同时恒成立.
令h(x)=x2+$\frac{2}{x}$,∵由 h′(x)=2x-$\frac{2}{{x}^{2}}$=$\frac{2{(x}^{3}-1)}{{x}^{2}}$=0,求得x=1,
在(0,1)上,h′(x)<0,在(1,$\sqrt{2}$]上,h′(x)>0,故h(x)的最小值为h(1)=3,∴a≤3 ①.
再根据 x∈(0,$\sqrt{2}$]时,a≥x2 恒成立,∴a≥2 ②.
结合①②可得,2≤a≤3.
故选:D

点评 本题主要考查函数的单调性和奇偶性的综合应用,导数与函数的单调性间的关系,函数的恒成立问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,在半径为30cm的半圆形铁皮上截取一块矩形材料A(点A,B在直径上,点C,D在半圆周上),并将其卷成一个以AD为母线的圆柱体罐子的侧面(不计剪裁和拼接损耗).
(1)若要求圆柱体罐子的侧面积最大,应如何截取?
(2)若要求圆柱体罐子的体积最大,应如何截取?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(1-x,x),$\overrightarrow{b}$=(1,-y)(x>0,y>0)且$\overrightarrow{a}$∥$\overrightarrow{b}$,则x+y的最小值是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,已知中心在原点,焦点在x轴上的椭圆E的离心率为$\frac{1}{2}$,且过点M(2,3).
(Ⅰ)求椭圆E的方程;
(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积$\frac{1}{2}$的直线l1,l2.以椭圆E的右焦点C为圆心$\sqrt{2}$为半径作圆,当直线l1,l2都与圆C相切时,求P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在区间(-∞,t]上存在x,使得不等式x2-4x+t≤0成立,则实数t的取值范围是[0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=2cos2ωx+$\sqrt{3}$sin2ωx(ω>0)的最小正周期为π,给出下列四个命题:
(1)f(x)的最大值为3;
(2)将f(x)的图象向左平移$\frac{π}{3}$后所得的函数是偶函数;
(3)f(x)在区间[-$\frac{π}{3}$,$\frac{π}{6}$]上单调递增;
(4)f(x)的图象关于直线x=$\frac{π}{6}$对称.
其中正确说法的序号是(  )
A.(2)(3)B.(1)(4)C.(1)(2)(4)D.(1)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,内角A,B,C所对的边分别是a,b,c,且满足bc=5,cos$\frac{A}{2}$=$\frac{3\sqrt{10}}{10}$.
(Ⅰ)求△ABC的面积;
(Ⅱ)若sinB=5sinC,求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某单位从包括甲、乙在内的5名应聘者中招聘2人,如果这5名应聘者被录用的机会均等,则甲、乙两人中至少有1人被录用的概率是$\frac{7}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的焦距为2$\sqrt{3}$,一条准线方程为x=$\frac{4\sqrt{3}}{3}$.过点(0,-2)的直线l交椭圆于A,C两点(异于椭圆顶点),椭圆的上顶点为B,直线AB,BC的斜率分别为k1,k2
(1)求椭圆C的标准方程;
(2)当∠CAB=90°时,求直线l的斜率;
(3)当直线l的斜率变化时,求k1•k2的值.

查看答案和解析>>

同步练习册答案