精英家教网 > 高中数学 > 题目详情
15.在直角坐标系xOy中,已知中心在原点,焦点在x轴上的椭圆E的离心率为$\frac{1}{2}$,且过点M(2,3).
(Ⅰ)求椭圆E的方程;
(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积$\frac{1}{2}$的直线l1,l2.以椭圆E的右焦点C为圆心$\sqrt{2}$为半径作圆,当直线l1,l2都与圆C相切时,求P的坐标.

分析 (I)设椭圆E的方程为:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),由题意可得:$\frac{c}{a}$=$\frac{1}{2}$,$\frac{4}{{a}^{2}}+\frac{9}{{b}^{2}}$=1,又a2=b2+c2,联立解出即可得出.
(II)由(I)可知:圆心C(2,0),半径为$\sqrt{2}$.设P(x0,y0),直线l1,l2的斜率分别为k1,k2.则l1的方程为:y-y0=k1(x-x0),l2的方程为:y-y0=k2(x-x0),利用直线l1与圆C相切的充要条件可得:$[(2-{x}_{0})^{2}-2]{k}_{1}^{2}$+2(2-x0)y0k1+${y}_{0}^{2}$=0,同理可得:$[(2-{x}_{0})^{2}-2]$${k}_{2}^{2}$+2(2-x0)y0k2+${y}_{0}^{2}$=0,因此k1,k2是方程:$[(2-{x}_{0})^{2}-2]$k2+2(2-x0)y0k+${y}_{0}^{2}$=0的两个实数根.可得k1k2=$\frac{{y}_{0}^{2}-2}{(2-{x}_{0})^{2}-2}$=$\frac{1}{2}$,又$\frac{{x}_{0}^{2}}{16}$+$\frac{{y}_{0}^{2}}{12}$=1.联立解出即可得出.

解答 解:(I)设椭圆E的方程为:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
由题意可得:$\frac{c}{a}$=$\frac{1}{2}$,$\frac{4}{{a}^{2}}+\frac{9}{{b}^{2}}$=1,又a2=b2+c2
联立解得c=2,a=4,b2=12.
∴椭圆E的方程为$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1.
(II)由(I)可知:圆心C(2,0),半径为$\sqrt{2}$.
设P(x0,y0),直线l1,l2的斜率分别为k1,k2
则l1的方程为:y-y0=k1(x-x0),l2的方程为:y-y0=k2(x-x0),
由直线l1与圆C相切时,$\frac{|2{k}_{1}+{y}_{0}-{k}_{1}{x}_{0}|}{\sqrt{{k}_{1}^{2}+1}}$=$\sqrt{2}$,
∴$[(2-{x}_{0})^{2}-2]{k}_{1}^{2}$+2(2-x0)y0k1+${y}_{0}^{2}$=0,同理可得:$[(2-{x}_{0})^{2}-2]$${k}_{2}^{2}$+2(2-x0)y0k2+${y}_{0}^{2}$=0,
∴k1,k2是方程:$[(2-{x}_{0})^{2}-2]$k2+2(2-x0)y0k+${y}_{0}^{2}$=0的两个实数根.
∴$\left\{\begin{array}{l}{(2-{x}_{0})^{2}≠0}\\{△>0}\end{array}\right.$,且k1k2=$\frac{{y}_{0}^{2}-2}{(2-{x}_{0})^{2}-2}$=$\frac{1}{2}$,
∵$\frac{{x}_{0}^{2}}{16}$+$\frac{{y}_{0}^{2}}{12}$=1.
∴$5{x}_{0}^{2}$-8x0-36=0,解得x0=-2或$\frac{18}{5}$.
由x0=-2,解得y0=±3;由x0=$\frac{18}{5}$,解得y0=$±\frac{\sqrt{57}}{5}$,满足条件.
∴点P的坐标分别为:(-2,±3),$(\frac{18}{5},±\frac{\sqrt{57}}{5})$.

点评 本题考查了椭圆的标准方程及其性质、直线与圆相切问题、一元二次方程的根与系数的关系、点到直线的距离公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知奇函数f(x)满足对任意x∈R都有f(x+6)=f(x)+3成立,且f(1)=1,则f(2015)+f(2016)=2015.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义在R上的函数f(x)是奇函数,且f(x)在(-∞,0)上是减函数,f(2)=0,g(x)=f(x+2),则不等式xg(x)≤0的解集是(  )
A.(-∞,-2]∪[2,+∞)B.[-4,-2]∪[0,+∞)C.(-∞,-4]∪[-2,+∞)D.(-∞,-4]∪[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.湖南省安全会议提到,原则上不再建设新的花炮厂,对已建成的花炮厂进行质量评估,质量评估单位等级分为优秀、合格和不合格三类.省质量技术监督局对浏阳所有花炮厂进行了质量评估,在所有进行评估的花炮厂中,质量优秀,合格与不合格的厂家数量如表.
优秀合格不合格
年产值2亿以上804520
年产值小于或等于2亿101530
(1)在所有参与调查的厂家中,用分层抽样的方法抽取n个厂家,已知评估“不合格”的厂家中抽取25家,求求n的值.
(2)在评估不合格的厂家中,用分层抽样的方法抽取5家组成一个总体,从这5家中任意选取2家,至少有1家年产量在2亿以上的概率;
(3)在接受调查的厂家中,有8家给这项活动打出的分数如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8个厂家打出的分数看作一个总体,从中任取1个数,求该数与总体平均数之差的绝对值超过0.6的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.不等式组$\left\{\begin{array}{l}{x-y≤0}\\{x+2y≤12}\\{x≥0}\end{array}\right.$表示的平面区域的整点(即横、纵坐标均为整数的点)的总数是(  )
A.23B.21C.19D.18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=(2x-1)+sin(2x-1)的图象的一个对称中心的坐标是($\frac{1}{2}$,0).(只需要写出一个对称中心的坐标)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知定义在R上的偶函数f(x)在[0,+∞)上递减,若不等式f(-ax+x3+1)+f(ax-x3-1)≥2f(1)对x∈(0,$\sqrt{2}$]恒成立,则实数a的取值范围为(  )
A.[2,4]B.[2,+∞)C.[3,4]D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知Sn为等差数列{an}的前n项和,a2=2,S4=14,则S6等于(  )
A.32B.39C.42D.45

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1(-c,0),F2(c,0),O为原点,第一象限的点M为双曲线C渐近线上的一点,且|OM|=c,点A为双曲线C的右顶点,若cos∠MOA=$\frac{\sqrt{21}}{7}$,则双曲线C的离心率为(  )
A.$\frac{12}{7}$B.$\frac{7}{3}$C.$\frac{3}{7}$$\sqrt{21}$D.$\frac{\sqrt{21}}{3}$

查看答案和解析>>

同步练习册答案