精英家教网 > 高中数学 > 题目详情
4.已知Sn为等差数列{an}的前n项和,a2=2,S4=14,则S6等于(  )
A.32B.39C.42D.45

分析 利用等差数列的通项公式及其前n项和公式即可得出.

解答 解:设等差数列{an}的公差为d,∵a2=2,S4=14,
∴a1+d=2,4a1+$\frac{4×3}{2}$d=14,
联立解得a1=-1,d=3.
则S6=-6$+\frac{6×5}{2}$×3=39.
故选:B.

点评 本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.复数z满足$\frac{1+z}{1-z}$=i(i为虚数单位),则|z|等于(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,已知中心在原点,焦点在x轴上的椭圆E的离心率为$\frac{1}{2}$,且过点M(2,3).
(Ⅰ)求椭圆E的方程;
(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积$\frac{1}{2}$的直线l1,l2.以椭圆E的右焦点C为圆心$\sqrt{2}$为半径作圆,当直线l1,l2都与圆C相切时,求P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=2cos2ωx+$\sqrt{3}$sin2ωx(ω>0)的最小正周期为π,给出下列四个命题:
(1)f(x)的最大值为3;
(2)将f(x)的图象向左平移$\frac{π}{3}$后所得的函数是偶函数;
(3)f(x)在区间[-$\frac{π}{3}$,$\frac{π}{6}$]上单调递增;
(4)f(x)的图象关于直线x=$\frac{π}{6}$对称.
其中正确说法的序号是(  )
A.(2)(3)B.(1)(4)C.(1)(2)(4)D.(1)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,内角A,B,C所对的边分别是a,b,c,且满足bc=5,cos$\frac{A}{2}$=$\frac{3\sqrt{10}}{10}$.
(Ⅰ)求△ABC的面积;
(Ⅱ)若sinB=5sinC,求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知正项数列{an}的前n项和为Sn,当n≥2时,(an-Sn-12=SnSn-1,且a1=1,设bn=log2$\frac{{a}_{n+1}}{3}$,则b1+b2+…+bn=n2-n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某单位从包括甲、乙在内的5名应聘者中招聘2人,如果这5名应聘者被录用的机会均等,则甲、乙两人中至少有1人被录用的概率是$\frac{7}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某高校进行自主招生测试,报考学生有500人,其中男生300人,女生200人,为了研究学生的成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们测试的分数,然后按性别分为男、女两组,再将两组学生的分数分成4组:[70,90),[90,110),[110,130),[130,150]分别加以统计,得到如图所示的频率分布直方图.

(Ⅰ)根据频率分布直方图可以估计女生测试成绩的平均值为103.5,请你估计男生测试成绩的平均值,由此推断男、女生测试成绩的平均水平的高低;
(Ⅱ)若规定分数不小于110分的学生为“优秀生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“优秀生与性别有关”?
优秀生非优秀生合计
男生
女生
合计
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
参考数据:
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$sin(\frac{π}{6}-α)=cos(\frac{π}{6}+α)$,则cos2α=(  )
A.1B.-1C.$\frac{1}{2}$D.0

查看答案和解析>>

同步练习册答案