精英家教网 > 高中数学 > 题目详情
18.已知$sin(\frac{π}{6}-α)=cos(\frac{π}{6}+α)$,则cos2α=(  )
A.1B.-1C.$\frac{1}{2}$D.0

分析 由所给等式得到|sinα|=|cosα|=$\frac{\sqrt{2}}{2}$,由二倍角公式得到结果.

解答 解:∵$sin(\frac{π}{6}-α)=cos(\frac{π}{6}+α)$,
∴$\frac{1}{2}$cosα-$\frac{\sqrt{3}}{2}$sinα=$\frac{\sqrt{3}}{2}$cosα-$\frac{1}{2}$sinα,
∴cosα=-sinα,
∴|sinα|=|cosα|=$\frac{\sqrt{2}}{2}$,
则cos2α=2cos2α-1=0,
故选:D

点评 本题考查两角和差正余弦公式以及二倍角公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知Sn为等差数列{an}的前n项和,a2=2,S4=14,则S6等于(  )
A.32B.39C.42D.45

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1(-c,0),F2(c,0),O为原点,第一象限的点M为双曲线C渐近线上的一点,且|OM|=c,点A为双曲线C的右顶点,若cos∠MOA=$\frac{\sqrt{21}}{7}$,则双曲线C的离心率为(  )
A.$\frac{12}{7}$B.$\frac{7}{3}$C.$\frac{3}{7}$$\sqrt{21}$D.$\frac{\sqrt{21}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知圆C的圆心坐标为(3,2),抛物线x2=-4y的准线被圆C截得的弦长为2,则圆C的方程为(x-3)2+(y-2)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.曲线y=2cos(x+$\frac{π}{4}$)cos(x-$\frac{π}{4}$)和直线y=$\frac{1}{2}$在y轴右侧的交点的横坐标按从小到大的顺序依次记为P1,P2,P3,…,则|P3P7|=(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=sin$\frac{2x}{3}•cos(\frac{2π}{3}+\frac{π}{2})+2$的图象的相邻两条对称轴之间的距离是(  )
A.$\frac{3π}{8}$B.$\frac{3π}{4}$C.$\frac{3π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\sqrt{3}cos(\frac{π}{2}-x)+2{cos^2}\frac{x}{2}$.
(Ⅰ)求$f(\frac{π}{3})$的值和f(x)的最小正周期;
(Ⅱ)求f(x)在[0,π]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2$\sqrt{3}$sinωxcosωx-2cos2ωx+1(ω>0)的图象上两个相邻的最高点之间的距离为π.
(Ⅰ)求函数y=f(x)的单调递增区间;
(Ⅱ)若f(θ)=$\frac{2}{3}$,求cos($\frac{π}{3}$-4θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC的内角A,B,C的对边分别为a,b,c,且满足$\frac{sin(2A+B)}{sinA}$=2+2cos(A+B).
(Ⅰ)求$\frac{b}{a}$的值;
(Ⅱ)若a=1,c=$\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

同步练习册答案