精英家教网 > 高中数学 > 题目详情
6.已知圆C的圆心坐标为(3,2),抛物线x2=-4y的准线被圆C截得的弦长为2,则圆C的方程为(x-3)2+(y-2)2=2.

分析 求出准线方程,计算圆心到直线的距离,利用垂径定理计算圆的半径,得出圆的方程.

解答 解:抛物线x2=-4y的准线方程为:y=1.
∴圆心C(3,2)到直线y=1的距离d=1.
∴圆的半径r=$\sqrt{{1}^{2}+{(\frac{2}{2})}^{2}}$=$\sqrt{2}$,
∴圆的方程为:(x-3)2+(y-2)2=2.
故答案为:(x-3)2+(y-2)2=2.

点评 本题考查了抛物线的准线方程,直线与圆的位置关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=2cos2ωx+$\sqrt{3}$sin2ωx(ω>0)的最小正周期为π,给出下列四个命题:
(1)f(x)的最大值为3;
(2)将f(x)的图象向左平移$\frac{π}{3}$后所得的函数是偶函数;
(3)f(x)在区间[-$\frac{π}{3}$,$\frac{π}{6}$]上单调递增;
(4)f(x)的图象关于直线x=$\frac{π}{6}$对称.
其中正确说法的序号是(  )
A.(2)(3)B.(1)(4)C.(1)(2)(4)D.(1)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某高校进行自主招生测试,报考学生有500人,其中男生300人,女生200人,为了研究学生的成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们测试的分数,然后按性别分为男、女两组,再将两组学生的分数分成4组:[70,90),[90,110),[110,130),[130,150]分别加以统计,得到如图所示的频率分布直方图.

(Ⅰ)根据频率分布直方图可以估计女生测试成绩的平均值为103.5,请你估计男生测试成绩的平均值,由此推断男、女生测试成绩的平均水平的高低;
(Ⅱ)若规定分数不小于110分的学生为“优秀生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“优秀生与性别有关”?
优秀生非优秀生合计
男生
女生
合计
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
参考数据:
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某市要进行城市环境建设,要把一个三角形的区域改造成街心花园,经过测量得到这个三角形区域的三条边分别为56米、72米和112米,问这个区域的面积是多少?(精确到0.1平方米)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的焦距为2$\sqrt{3}$,一条准线方程为x=$\frac{4\sqrt{3}}{3}$.过点(0,-2)的直线l交椭圆于A,C两点(异于椭圆顶点),椭圆的上顶点为B,直线AB,BC的斜率分别为k1,k2
(1)求椭圆C的标准方程;
(2)当∠CAB=90°时,求直线l的斜率;
(3)当直线l的斜率变化时,求k1•k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=mx3-x在(-∞,+∞)上是减函数,则m的取值范围是(  )
A.(-∞,0)B.(-∞,1)C.(-∞,0]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$sin(\frac{π}{6}-α)=cos(\frac{π}{6}+α)$,则cos2α=(  )
A.1B.-1C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{ln(x+1)}{x}$.
(1)判断f(x)在(0,+∞)的单调性;
(2)若x>0,证明:(ex-1)ln(x+1)>x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知平面直角坐标系xOy中,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为(3,$\frac{π}{4}$).曲线C的参数方程为ρ=2cos(θ-$\frac{π}{4}$)(θ为参数).
(Ⅰ)写出点P的直角坐标及曲线C的直角坐标方程;
(Ⅱ)若Q为曲线C上的动点,求PQ的中点M到直线l:2ρcosθ+4ρsinθ=$\sqrt{2}$的距离的最小值.

查看答案和解析>>

同步练习册答案