精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\frac{ln(x+1)}{x}$.
(1)判断f(x)在(0,+∞)的单调性;
(2)若x>0,证明:(ex-1)ln(x+1)>x2

分析 (1)根据导数和函数单调性的关系,以及导数和最值得关系即可求出;
(2)原不等式等价于$\frac{ln(x+1)}{x}$>$\frac{(ln{e}^{x}-1+1)}{{e}^{x}-1}$,要证原不等式成立,只需要证明当x>0时,x<ex-1,令h(x)=ex-x-1,利用导数和最值得关系即可证明.

解答 解:(1)由函数f(x)的定义域为(-1,0)∪(0,+∞)
∴f′(x)=$\frac{\frac{x}{1+x}-ln(1+x)}{{x}^{2}}$,
设g(x)=$\frac{x}{1+x}$-ln(1+x),
∴g′(x)=$\frac{1+x-x}{(1+x)^{2}}$-$\frac{1}{1+x}$=$\frac{-x}{(1+x)^{2}}$<0,
∴g(x)在(0,+∞)为减函数,
∴g(x)<g(0)=0,
∴f′(x)<0,
∴f(x)在(0,+∞)为减函数;
(2)(ex-1)ln(x+1)>x2等价于$\frac{ln(x+1)}{x}$>$\frac{x}{{e}^{x}-1}$,
∵$\frac{x}{{e}^{x}-1}$=$\frac{ln{e}^{x}}{{e}^{x}-1}$=$\frac{(ln{e}^{x}-1+1)}{{e}^{x}-1}$,
∴原不等式等价于$\frac{ln(x+1)}{x}$>$\frac{(ln{e}^{x}-1+1)}{{e}^{x}-1}$,
由(1)知,f(x)=$\frac{ln(x+1)}{x}$是(0,+∞)上的减函数,
∴要证原不等式成立,只需要证明当x>0时,x<ex-1,
令h(x)=ex-x-1,
∴h′(x)=ex-1>0,
∴h(x)是(0,+∞)上的增函数,
∴h(x)>h(0)=0,
即x<ex-1,
∴f(x)>f(ex-1),
即$\frac{ln(x+1)}{x}$>$\frac{(ln{e}^{x}-1+1)}{{e}^{x}-1}$=>$\frac{x}{{e}^{x}-1}$,
故(ex-1)ln(x+1)>x2

点评 本题考查了导数和函数的单调性最值得关系,考查了转化思想,培养了学生的运算能力,分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{sinx,sinx≤cosx}\\{cosx,sinx>cosx}\\{\;}\end{array}\right.$,则下列结论正确的是(  )
A.函数f(x)是偶函数B.函数f(x)在[0,$\frac{π}{2}$]上单调递增
C.函数f(x)是周期为π的周期函数D.函数f(x)的值域为[-1,$\frac{\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知圆C的圆心坐标为(3,2),抛物线x2=-4y的准线被圆C截得的弦长为2,则圆C的方程为(x-3)2+(y-2)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=sin$\frac{2x}{3}•cos(\frac{2π}{3}+\frac{π}{2})+2$的图象的相邻两条对称轴之间的距离是(  )
A.$\frac{3π}{8}$B.$\frac{3π}{4}$C.$\frac{3π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\sqrt{3}cos(\frac{π}{2}-x)+2{cos^2}\frac{x}{2}$.
(Ⅰ)求$f(\frac{π}{3})$的值和f(x)的最小正周期;
(Ⅱ)求f(x)在[0,π]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2}{3}π$D.$({2-\sqrt{2}})π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2$\sqrt{3}$sinωxcosωx-2cos2ωx+1(ω>0)的图象上两个相邻的最高点之间的距离为π.
(Ⅰ)求函数y=f(x)的单调递增区间;
(Ⅱ)若f(θ)=$\frac{2}{3}$,求cos($\frac{π}{3}$-4θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若直线ax-by+1=0平分圆C:x2+y2+2x-4y+1=0的周长,则ab的取值范围是$(-∞,\frac{1}{8}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C的对边分别为a,b,c,C=$\frac{2π}{3}$,且a2-(b-c)2=(2-$\sqrt{3}$)bc.
(Ⅰ)求角B的大小;
(Ⅱ)若等差数列{an}的公差不为零,且a1•cos2B=1,且a2,a4,a8成等比数列,求{${\frac{4}{{{a_n}{a_{n+1}}}}$}的前n项和Sn

查看答案和解析>>

同步练习册答案