精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=2$\sqrt{3}$sinωxcosωx-2cos2ωx+1(ω>0)的图象上两个相邻的最高点之间的距离为π.
(Ⅰ)求函数y=f(x)的单调递增区间;
(Ⅱ)若f(θ)=$\frac{2}{3}$,求cos($\frac{π}{3}$-4θ)的值.

分析 (Ⅰ)由二倍角公式和辅助角公式化简,由图象上两个相邻的最高点之间的距离为π,即可得到ω,由此得到单调增区间.
(Ⅱ)由f(θ)=$\frac{2}{3}$,得到$sin(2θ-\frac{π}{6})=\frac{1}{3}$.由此由二倍角公式得到结果.

解答 解:(Ⅰ)$f(x)=2\sqrt{3}sinωxcosωx-2{cos^2}ωx+1$
=$\sqrt{3}(2sinωxcosωx)-(2{cos^2}ωx-1)$=$\sqrt{3}sin2ωx-cos2ωx$=$2sin(2ωx-\frac{π}{6})$.
由题意知,函数f(x)的最小正周期为π,
则$\frac{2π}{2ω}=π$,故ω=1.
所以f(x)=$2sin(2x-\frac{π}{6})$,
由$2kπ-\frac{π}{2}≤2x-\frac{π}{6}≤2kπ+\frac{π}{2}(k∈Z)$,
得$kπ-\frac{π}{6}≤x≤kπ+\frac{π}{3}(k∈Z)$,
所以函数f(x)的单调递增区间为$[kπ-\frac{π}{6},kπ+\frac{π}{3}](k∈Z)$.
(Ⅱ)由f(x)=$2sin(2x-\frac{π}{6})$,
$f(θ)=\frac{2}{3}$,得$sin(2θ-\frac{π}{6})=\frac{1}{3}$.
$cos(\frac{π}{3}-4θ)=cos(4θ-\frac{π}{3})=cos2(2θ-\frac{π}{6})=1-2{sin^2}(2θ-\frac{π}{6})=1-2×\frac{1}{9}=\frac{7}{9}$.

点评 本题考查由二倍角公式和辅助角公式,以及数形结合,即可得到ω.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.某高校进行自主招生测试,报考学生有500人,其中男生300人,女生200人,为了研究学生的成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们测试的分数,然后按性别分为男、女两组,再将两组学生的分数分成4组:[70,90),[90,110),[110,130),[130,150]分别加以统计,得到如图所示的频率分布直方图.

(Ⅰ)根据频率分布直方图可以估计女生测试成绩的平均值为103.5,请你估计男生测试成绩的平均值,由此推断男、女生测试成绩的平均水平的高低;
(Ⅱ)若规定分数不小于110分的学生为“优秀生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“优秀生与性别有关”?
优秀生非优秀生合计
男生
女生
合计
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
参考数据:
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$sin(\frac{π}{6}-α)=cos(\frac{π}{6}+α)$,则cos2α=(  )
A.1B.-1C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{ln(x+1)}{x}$.
(1)判断f(x)在(0,+∞)的单调性;
(2)若x>0,证明:(ex-1)ln(x+1)>x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.圆C1:x2+y2=4与圆C2:x2+y2-4x+2y+4=0的公切线有2条.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2sin$\frac{ωx}{2}$($\sqrt{3}$cos$\frac{ωx}{2}$-sin$\frac{ωx}{2}$)(ω>0)的最小正周期为3π.
(Ⅰ)求ω的值和函数f(x)在区间$[{-π,\frac{3π}{4}}]$上的最大值和最小值;
(Ⅱ)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2$\sqrt{3}$,c=4,且f($\frac{3}{2}$A)=1,求b和△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,tanA=-$\frac{3}{4}$,则sin2A=-$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知平面直角坐标系xOy中,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为(3,$\frac{π}{4}$).曲线C的参数方程为ρ=2cos(θ-$\frac{π}{4}$)(θ为参数).
(Ⅰ)写出点P的直角坐标及曲线C的直角坐标方程;
(Ⅱ)若Q为曲线C上的动点,求PQ的中点M到直线l:2ρcosθ+4ρsinθ=$\sqrt{2}$的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知各项均为正数的等比数列{an}中,2a7+a8=a9.数列{bn}满足bn=log2an,且其前10项为45,则数列{an}的通项公式为an=2n-1

查看答案和解析>>

同步练习册答案