| 优秀 | 合格 | 不合格 | |
| 年产值2亿以上 | 80 | 45 | 20 |
| 年产值小于或等于2亿 | 10 | 15 | 30 |
分析 (1)根据在抽样过程中每个个体被抽到的概率相等,写出比例式,使得比例相等,得到关于n的方程,解方程即可.
(2)由题意知本题是一个等可能事件的概率,本题解题的关键是列举出所有事件的事件数,再列举出满足条件的事件数,得到概率.
(3)先求出总体的平均数,然后找到与总体平均数之差的绝对值超过0.6的数,最后根据古典概型的公式进行求解即可.
解答 解:(1)由题意得$\frac{n}{80+10+45+25+30+20}$=$\frac{25}{30+20}$,解得n=100,
(2)年产值2亿以有5×$\frac{20}{20+30}$=2家,记为S1,S2;年产值小于或等于2亿的有5×$\frac{30}{20+30}$=3家,记为B1,B2,B3,
则从中任取2件的所有基本事件为:
(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),
(S2,B3),(S1,S2),(B1,B2),(B2,B3),(B1,B3)共10个,
其中至少有1家年产量在2亿以上的基本事件有7个:
(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),
所以从这5家中任意选取2家,至少有1家年产量在2亿以上的概率为$\frac{7}{10}$.
(3)样本的平均数为$\frac{1}{8}$(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.
那么与总体平均数之差的绝对值超过0.6的数只有8.2,
所以该数与总体平均数之差的绝对值超过0.6的概率为$\frac{1}{8}$.
点评 本题考查的知识点是古典概型概率计算公式,其中熟练掌握利用古典概型概率计算公式求概率的步骤,是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2)(3) | B. | (1)(4) | C. | (1)(2)(4) | D. | (1)(3)(4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 优秀生 | 非优秀生 | 合计 | |
| 男生 | |||
| 女生 | |||
| 合计 |
| P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
| k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com