精英家教网 > 高中数学 > 题目详情
18.曲线y=2lnx上的点到直线2x-y+1=0处的最短距离是$\frac{3\sqrt{5}}{5}$.

分析 设直线2x-y+c=0是曲线y=2lnx的切线且与直线2x-y+1=0平行,利用导数的几何意义求出切点坐标,再由点到直线的距离公式,即可算出曲线y=2lnx上的点到直线2x-y+1=0的最短距离.

解答 解:设直线2x-y+c=0与直线2x-y+1=0平行,
且与曲线y=2lnx相切,切点为P(m,2lnm)
由y'=$\frac{2}{x}$,即有$\frac{2}{m}$=2,解得m=1,
可得切点为P(1,0),
可得P到直线2x-y+1=0的距离d=$\frac{|2-0+1|}{\sqrt{5}}$=$\frac{3\sqrt{5}}{5}$,
即曲线y=2lnx上的点到直线2x-y+1=0的最短距离是$\frac{3\sqrt{5}}{5}$.
故答案为:$\frac{3\sqrt{5}}{5}$.

点评 本题求曲线上动点到直线的最短距离,着重考查了点到直线的距离公式和导数的几何意义等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设x,y满足约束条件$\left\{\begin{array}{l}x≥0\\ y≥x\\ 4x+3y≤12\end{array}\right.$,则$\frac{x+2y+3}{x+1}$的取值范围是(  )
A.[1,5]B.[2,6]C.[2,10]D.[3,11]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.点(1,cosθ)到直线xsinθ+ycosθ-1=0的距离是$\frac{1}{4}({0°}≤θ≤{180°})$,那么θ=30°或150°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.曲线y=sinx与x轴在区间[0,π]上所围成的图形的面积是(  )
A.-2B.0C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,某市准备在道路EF的一侧修建一条运动比赛赛道,赛道的前一部分为曲线段FBC,该曲线段是函数y=Asin(ωx+φ)(A>0,o<ω<π)在x∈[-4,0]时的图象,且图象的最高点为B(-1,2);赛道的中间部分是长为$\sqrt{3}$千米的直线跑道CD,且CD∥EF;赛道的后一部分是以O为圆心的一段圆弧DE.
(1)求y=Asin(ωx+φ)的解析式和∠DOE的弧度数;
(2)若要在圆弧赛道所对应的扇形ODE区域内建一个“矩形草坪PQMN”,矩形的一边MN在道路EF上,一个顶点Q在半径OD上,另外一个顶点P在圆弧DE上,且设∠POE=θ,求“矩形草坪PQMN”面积S的最大值,以及S取最大值时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,在(0,+∞)上是增加的是(  )
A.f(x)=2sinxcosxB.f(x)=xexC.f(x)=x3-xD.f(x)=-x+lnx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.曲线y=$\frac{9}{x}$在点(3,3)处的切线的倾斜角等于(  )
A.45°B.60°C.135°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数$f(x)=\frac{1}{{1-{x^2}}}+\sqrt{3-x}$的定义域为{x|x≤3且x≠±1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\frac{5π}{2}<x<3π$,化简$\sqrt{\frac{1-sin(\frac{3}{2}π-x)}{2}}$的结果为(  )
A.-cos$\frac{x}{2}$B.cos$\frac{x}{2}$C.$±cos\frac{x}{2}$D.cos${\;}^{2}\frac{x}{2}$

查看答案和解析>>

同步练习册答案