精英家教网 > 高中数学 > 题目详情
7.函数$f(x)=\frac{1}{{1-{x^2}}}+\sqrt{3-x}$的定义域为{x|x≤3且x≠±1}.

分析 根据函数成立的条件即可求函数的定义域.

解答 解:要使函数有意义,则$\left\{\begin{array}{l}{1-{x}^{2}≠0}\\{3-x≥0}\end{array}\right.$,
即$\left\{\begin{array}{l}{x≠±1}\\{x≤3}\end{array}\right.$,
即函数的定义域为{x|x≤3且x≠±1},
故答案为:{x|x≤3且x≠±1}

点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若实数a使得方程$2cos({2x+\frac{π}{4}})=a$在$[-\frac{π}{8},\frac{7π}{8}]$有两个不相等的实数根x1,x2,则sin(x1+x2)=(  )
A.0B.1C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.曲线y=2lnx上的点到直线2x-y+1=0处的最短距离是$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,a,b,c分别为角A,B,C所对的边,若acosA=bcosB,则此三角形一定是(  ) 三角形.
A.等腰直角B.等腰或直角C.等腰D.直角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.用反证法证明命题:“设实数a、b、c满足a+b+c=1,则a、b、c中至少有一个数不小于$\frac{1}{3}$”时,第一步应写:假设a、b、c都小于$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=$\overrightarrow{a}$•$\overrightarrow{b}$=2,($\overrightarrow{a}$-$\overrightarrow{c}$)•(($\overrightarrow{b}$-2$\overrightarrow{c}$)=0,则|$\overrightarrow{b}$-$\overrightarrow{c}$|的最小值为(  )
A.$\frac{\sqrt{3}-1}{2}$B.$\frac{\sqrt{7}-\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{7}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数y=loga(-x2-ax-1),(a>0且a≠1)有最大值,则实数a的取值范围是a>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.10件产品中有3件次品,从中任取4件,求至少有一件次品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知α、β为锐角,且$\overrightarrow a$=(sinα,cosβ),$\overrightarrow b$=(cosα,sinβ),当$\overrightarrow a∥\overrightarrow b$时,α+β=$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案