精英家教网 > 高中数学 > 题目详情
6.函数f(x)=asinx+bcosx+c(a,b,c为非零常数)的图象过原点,且对任意x∈R,总有f(x)≥f($\frac{π}{3}$)成立.
(1)若f(x)的最小值等于-1,求f(x)的解析式.
(2)试求f(x)在(-$\frac{π}{2}$,$\frac{π}{2}$]的值域.

分析 (1)由f(x)图象过原点可得f(0)=0,由对任意x∈R总有f(x)≥f($\frac{π}{3}$)及最小值为-1得f($\frac{π}{3}$)=-1,且有f′($\frac{π}{3}$)=0,联立方程组可解;
(2)化简函数解析式可得f(x)=1-2sin(x+$\frac{π}{6}$),由x的范围,根据正弦函数的图象和性质即可求得值域.

解答 解:(1)由题意,得 $\left\{\begin{array}{l}{\stackrel{f(0)=b+c=0}{f(\frac{π}{3})=\frac{\sqrt{3}a}{2}+\frac{b}{2}+c=-1}}\\{f′(\frac{π}{3})=\frac{a}{2}-\frac{\sqrt{3}b}{2}=0}\end{array}\right.$,
解得a=-$\sqrt{3}$,b=-1,c=1,
∴f(x)=-$\sqrt{3}$sinx-cosx+1.
(2)由(1)可知,f(x)=-$\sqrt{3}$sinx-cosx+1=1-2sin(x+$\frac{π}{6}$),
∵x∈(-$\frac{π}{2}$,$\frac{π}{2}$],
∴x+$\frac{π}{6}$∈(-$\frac{π}{3}$,$\frac{2π}{3}$],
∴2sin(x+$\frac{π}{6}$)∈(-$\sqrt{3}$,2],
∴f(x)=1-2sin(x+$\frac{π}{6}$)∈[-1,1+$\sqrt{3}$).

点评 本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数的性质,考查学生综合运用知识解决问题的能力,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.四双拖鞋,随意拿出四支,不能组成一双的次数为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知双曲线中心在原点,一个焦点为F(-$\sqrt{7}$,0),被直线y=x-1所截得的弦中点横坐标为-$\frac{2}{3}$,求此双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{a}$-$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,用$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$表示$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+$\frac{1}{2}$$\overrightarrow{{e}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设(x-3)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a0+a1+a2+a3+a4+a5=-32.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列三角函数值(可用计算器)
(1)cos1109°;
(2)tan$\frac{19π}{3}$
(3)sin(-1050°)
(4)tan(-$\frac{31π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某几何体的三视图(单位:cm)如图所示,则该几何体的体积为$\frac{20}{3}$cm3,外接球的表面积为12πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知{an}中,a1=1,且an+1=$\frac{1}{2}$an+$\frac{1}{{2}^{n}}$,则a3=(  )
A.1B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系中,已知A( cosx,1),B(l,-sinx),X∈R,
(Ⅰ)求|AB|的最小值;
(Ⅱ)设$f(x)=\overrightarrow{OA}•\overrightarrow{OB}$,将函数f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数g(x)的图象求函数g(x)的对称中心.

查看答案和解析>>

同步练习册答案