精英家教网 > 高中数学 > 题目详情
11.求下列三角函数值(可用计算器)
(1)cos1109°;
(2)tan$\frac{19π}{3}$
(3)sin(-1050°)
(4)tan(-$\frac{31π}{4}$)

分析 运用诱导公式化简后利用计算器或特殊角的三角函数值即可求值.

解答 解:(1)cos1109°=cos(3×360°+29°)=cos29°=0.875;
(2)tan$\frac{19π}{3}$=tan(6π+$\frac{π}{3}$)=tan$\frac{π}{3}$=$\sqrt{3}$;
(3)sin(-1050°)=sin(30°-1080°)=-sin(360°×3-30°)=sin30°=$\frac{1}{2}$;
(4)tan(-$\frac{31π}{4}$)=-tan(8π-$\frac{π}{4}$)=tan$\frac{π}{4}$=1.

点评 本题主要考查了诱导公式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.将体积为1的四面体第一次挖去以各棱中点为顶点构成的多面体,第二次再将剩余的每个四面体均挖去以各棱中点为顶点构成的多面体,如此下去,共进行了n(n∈N*)次,则第一次挖去的几何体的体积是$\frac{1}{2}$;这n次共挖去的所有几何体的体积和是$1-(\frac{1}{2})^{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.下列命题中,正确的是②.
①两条直线和第三条直线成等角,则这两条直线平行;
②平行移动两条异面直线中的任何一条,它们所成的角不变;
③过空间四边形ABCD的顶点A引CD的平行线段AE,则∠BAE是异面直线AB与CD所成的角;
④四边相等,且四个角也相等的四边形是正方形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某村2002年底有住房2万平方米.
(1)设平均每年新建住房住房面积2.3万平方米,求2014年底的住房面积;
(2)到2014年底该村一共拥有多少住房面积?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.函数f(x)=asinx+bcosx+c(a,b,c为非零常数)的图象过原点,且对任意x∈R,总有f(x)≥f($\frac{π}{3}$)成立.
(1)若f(x)的最小值等于-1,求f(x)的解析式.
(2)试求f(x)在(-$\frac{π}{2}$,$\frac{π}{2}$]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.是否存在常数a、b使得1+2×3+3×32+4×32+…+n×3n-1=3n(na-b)+$\frac{1}{4}$对一切n∈N*都成立?若存在,请求出a、b的值并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知-$\frac{π}{4}$<α<$\frac{3π}{4}$,sin($\frac{π}{4}$-α)=$\frac{\sqrt{5}}{5}$,则sinα=(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}的首项a1=1,前n项和为Sn,且Sn=2Sn-1+1(n≥2且n∈N*),数列{bn}是等差数列,且b1=a1,b4=a1+a2+a3,设cn=$\frac{1}{{{b_n}{b_{n+1}}}}$,数列{cn}的前n项和为Tn,则T10=$\frac{10}{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若m2-n2=6,且m-n=3,则m+n=2.

查看答案和解析>>

同步练习册答案