分析 (Ⅰ)求出|AB|,利用三角函数的性质求|AB|的最小值;
(Ⅱ)求出$f(x)=\overrightarrow{OA}•\overrightarrow{OB}$,利用函数f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数g(x)的图象,可得g(x),再求函数g(x)的对称中心.
解答 解:(Ⅰ)|AB|=$\sqrt{(cosx-1)^{2}+(1+sinx)^{2}}$=$\sqrt{3-2cosx+2sinx}$=$\sqrt{3-2\sqrt{2}sin(x-\frac{π}{4})}$
∴|AB|的最小值为$\sqrt{3-2\sqrt{2}}$=$\sqrt{2}$-1;
(Ⅱ)$f(x)=\overrightarrow{OA}•\overrightarrow{OB}$=cosx-sinx=$\sqrt{2}$cos(x+$\frac{π}{4}$),
将函数f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数g(x)=$\sqrt{2}$cos($\frac{1}{2}$x+$\frac{π}{4}$),
令$\frac{1}{2}$x+$\frac{π}{4}$=kπ+$\frac{π}{2}$,可得x=2kπ+$\frac{π}{2}$,
∴函数g(x)的对称中心为(2kπ+$\frac{π}{2}$,0)(k∈Z).
点评 本题考查平面向量知识的运用,考查三角函数知识,考查学生分析解决问题的能力,确定f(x)是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{2}$,$\frac{3}{2}$) | B. | (-$\frac{3}{2}$,$\frac{1}{2}$) | C. | (-1,1) | D. | (-∞,1)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com