精英家教网 > 高中数学 > 题目详情
6.已知曲线C1的极坐标方程是ρ=4cosθ,曲线C1经过平移变换$\left\{\begin{array}{l}{x^'}=x+2\\{y^'}=y-1\end{array}\right.$得到曲线C2;以极点为原点,极轴为x轴正方向建立平面直角坐标系,直线l的参数方程是$\left\{{\begin{array}{l}{x=2+tcosθ}\\{y=1+tsinθ}\end{array}}\right.$(t为参数).
(1)求曲线C1,C2的直角坐标方程;
(2)设直线l与曲线C1交于A、B两点,点M的直角坐标为(2,1),若$\overrightarrow{AB}=3\overrightarrow{MB}$,求直线l的普通方程.

分析 (1)利用直角坐标与极坐标间的关系:ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.
(2)设A(2+tAcosθ,1+tAsinθ),B(2+tBcosθ,1+tBsinθ).把直线的参数方程代入曲线C1的方程,根据t的几何意义即可求出.

解答 解:(1)曲线C1的极坐标方程是ρ=4cosθ,直角坐标方程为(x-2)2+y2=4.
曲线C1经过平移变换$\left\{\begin{array}{l}{x^'}=x+2\\{y^'}=y-1\end{array}\right.$得到曲线${C_2}:{(x-4)^2}+{(y+1)^2}=4$…(4分)
(2)设A(2+t1cosθ,1+t1sinθ),B(2+t2cosθ,1+t2sinθ),
由$\overrightarrow{AB}=3\overrightarrow{MB}$,得t1=-2t2①…(4分)
联立直线的参数方程与曲线C1的直角坐标方程得:t2cos2θ+(1+tsinθ)2=4,
整理得:t2+2tsinθ-3=0,∴t1+t2=-2sinθ,t1•t2=-3,与①联立得:$sinθ=\frac{{\sqrt{6}}}{4}$,$cosθ=±\frac{{\sqrt{10}}}{4}$…(8分)∴直线的参数方程为$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{10}}}{4}t}\\{y=1+\frac{{\sqrt{6}}}{4}t}\end{array}}\right.$(t为参数)或$\left\{{\begin{array}{l}{x=2-\frac{{\sqrt{10}}}{4}t}\\{y=1+\frac{{\sqrt{6}}}{4}t}\end{array}}\right.$(t为参数)
消去参数的普通方程为$\sqrt{15}x-5y-2\sqrt{15}=0$或$\sqrt{15}x+5y-2\sqrt{15}=0$…(10分)

点评 本题考查了极坐标、直角坐标方程、及参数方程的互化,考查了方程思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系中,已知A( cosx,1),B(l,-sinx),X∈R,
(Ⅰ)求|AB|的最小值;
(Ⅱ)设$f(x)=\overrightarrow{OA}•\overrightarrow{OB}$,将函数f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数g(x)的图象求函数g(x)的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=1+4cosx-4sin2x(-$\frac{2π}{3}$≤x≤$\frac{3π}{4}$)的值域是[-4,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在7名运动员中选4名运动员组成接力队,参加4×100m接力赛,那么甲乙两人都不跑中间两棒的安排方法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知A(2,1),B(3,2),D(-1,4),
(1)求证:$\overrightarrow{AB}⊥\overrightarrow{AD}$;
(2)若四边形ABCD为矩形,试确定点C的坐标;
(3)若M为直线OD上的一点,O为坐标原点,当$\overrightarrow{MA}•\overrightarrow{MB}$取最小值时,求$\overrightarrow{OM}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{OA}$=(3,4),$\overrightarrow{OB}$=(-9,2),$\overrightarrow{OC}$=(1,7).
(1)分别求线段BC、AC的中点E、F坐标;
(2)求AE,BF的交点M的坐标;
(3)在直线AB上求一点P,使|$\overrightarrow{AP}$|=$\frac{1}{3}$|$\overrightarrow{AB}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某工厂对同时生产某件产品的件数x(单位:件)与所用时间y(单位:小时)进行了测验.测验结果如下表所示:
件数x(件)111213
时间y(小时)252630
(1)求出y与x的线性回归方程$\widehat{y}$=bx+a;
(2)试预测同时生产20件该产品需要多少小时?
(附:线性回归方程$\widehat{y}$=bx+a中,b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}-b\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知:在数列{an},前n项和Sn=$\frac{3}{2}$n2+$\frac{7}{2}$n.
(1)求an
(2)将{an}中的第2项,第4项,…,第2n项按原来的顺序排成一个新数列,求此数列的前n项和Gn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{t}}\\{y=\sqrt{3t}}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=1,则曲线C1与C2的交点的极坐标为$(1,\frac{π}{3})$.

查看答案和解析>>

同步练习册答案