精英家教网 > 高中数学 > 题目详情
14.在7名运动员中选4名运动员组成接力队,参加4×100m接力赛,那么甲乙两人都不跑中间两棒的安排方法有多少种?

分析 第一步,安排中间2个位置,第二步,安排首尾2个位置,利用乘法原理可得结论.

解答 解:第一步中间位置除了甲乙还有5人,5个选2个全排列跑中间两棒,有${A}_{5}^{2}$=20种;
第二步确定首尾的人选,还剩下5个人,选2个全排列,有${A}_{5}^{2}$=20种.
两步相乘,共有20×20=400种.

点评 本题考查计数原理的运用问题,解题的关键是正确分步.注意甲乙都不跑中间,包括了甲乙可能都不上场的情形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设a>0,b>0,c>0,且a+b+c=1,若M=($\frac{1}{a}$-1)•($\frac{1}{b}$-1)•($\frac{1}{c}$-1),则M的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对于定义在实数集R上的函数f(x),如果存在实数x0,使f(x0)=x0,那么x0叫做函数f(x)的一个好点.已知函数f(x)=x2+2ax+1不存在好点,那么a的取值范围是(  )
A.(-$\frac{1}{2}$,$\frac{3}{2}$)B.(-$\frac{3}{2}$,$\frac{1}{2}$)C.(-1,1)D.(-∞,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆$\frac{{x}^{2}}{4}+{y}^{2}=1$的焦点为F1,F2,在长轴A1A2上任取一点M,过M作垂直于A1A2的直线交椭圆于点P,则∠F1PF2为钝角的概率为(  )
A.$\frac{\sqrt{2}}{3}$B.$\frac{1}{2}$C.$\frac{{2\sqrt{2}}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知正方体ABCD-A1B1C1D1的棱长为l,动点P在正方体表面上且满足|PA|=|PC1|,则动点P的轨迹长度为(  )
A.3B.3$\sqrt{2}$C.3$\sqrt{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若△ABC外接圆的圆心为O,半径为4,$\overrightarrow{OA}$+2$\overrightarrow{OB}$+2$\overrightarrow{OC}$=$\overrightarrow{0}$,则$\overrightarrow{CA}$在$\overrightarrow{CB}$上的投影为$\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C1的极坐标方程是ρ=4cosθ,曲线C1经过平移变换$\left\{\begin{array}{l}{x^'}=x+2\\{y^'}=y-1\end{array}\right.$得到曲线C2;以极点为原点,极轴为x轴正方向建立平面直角坐标系,直线l的参数方程是$\left\{{\begin{array}{l}{x=2+tcosθ}\\{y=1+tsinθ}\end{array}}\right.$(t为参数).
(1)求曲线C1,C2的直角坐标方程;
(2)设直线l与曲线C1交于A、B两点,点M的直角坐标为(2,1),若$\overrightarrow{AB}=3\overrightarrow{MB}$,求直线l的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知平行四边形ABCD的顶点A(0,0),B(4,1),C(6,8)
(1)求顶点D的坐标;
(2)若$\overrightarrow{DE}$=2$\overrightarrow{EC}$,F为AD的中点,求AE与BF的交点I的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=2+t}\end{array}\right.$(t为参数),以坐标原点为极点,以x轴的非负半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=2.
(1)求直线l与圆C的公共点的个数;
(2)在平面直角坐标系中,圆C经过伸缩变换$\left\{\begin{array}{l}{x′=x}\\{y′=\frac{1}{2}y}\end{array}\right.$得到线段C′,设G(x,y)为曲线C′上一点,求x2+xy+4y2的最大值,并求相应点G的坐标.

查看答案和解析>>

同步练习册答案