精英家教网 > 高中数学 > 题目详情
18.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则(  )
A.函数f(x)在区间[0,$\frac{π}{2}$]上单调递增B.函数f(x)在区间[0,$\frac{π}{2}$]上单调递减
C.函数f(x)在区间[0,$\frac{π}{2}$]上的最小值为-2D.函数f(x)在区间[0,$\frac{π}{2}$]上的最小值为-1

分析 由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点求出φ的值,可得函数的解析式,再利用正弦函数的定义域和值域求得函数f(x)在区间[0,$\frac{π}{2}$]上的最值.

解答 解:由函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象,
可得 A=2,$\frac{T}{4}$=$\frac{1}{4}•\frac{2π}{ω}$=$\frac{5π}{6}$-$\frac{7π}{12}$,求得ω=2.
再根据图象经过点($\frac{7π}{12}$,0),可得2•$\frac{7π}{12}$+φ=kπ,k∈Z,求得φ=-$\frac{π}{6}$,
故f(x)=2sin(2x-$\frac{π}{6}$).
在区间[0,$\frac{π}{2}$]上,2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],f(x)∈[-1,2],
故f(x)在区间[0,$\frac{π}{2}$]上没有单调性,当f(x)有最小值为-1,故排除A、B、C,
故选:D.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点求出φ的值,正弦函数的定义域和值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.到点F1(-1,-1)和F2(1,1)的距离之差为2$\sqrt{2}$的点的轨迹方程是y=x,(x≥1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若复数z=$\frac{a+3i}{i}$+a的实部为2,则复数z的虚部是(  )
A.-iB.-3C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a>1,b>1,且$\frac{1}{a-1}+\frac{1}{b-1}=1$,则a+4b的最小值为(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对的边分别为a,b,c.
(Ⅰ)若b2+c2=a2+bc,求角A的大小;
(Ⅱ)若acosA=bcosB,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设x1,x2是实系数一元二次方程ax2+bx+c=0的两个根,若x1是虚数,$\frac{x_1^2}{x_2}$是实数,则S=1+$\frac{x_1}{x_2}+{({\frac{x_1}{x_2}})^2}+{({\frac{x_1}{x_2}})^4}+{({\frac{x_1}{x_2}})^8}+{({\frac{x_1}{x_2}})^{16}}+{({\frac{x_1}{x_2}})^{32}}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.命题:“?x∈R,ex≤x”的否定是$?{x_0}∈R,使{e^{x_0}}>{x_0}$(写出否定命题)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若复数z+3=1-i,则复数z的共轭复数的模(  )
A.1B.$\sqrt{2}$C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知△ABC中,BC长为6,周长为16,则$\overrightarrow{AB}$•$\overrightarrow{AC}$的取值范围是[7,16).

查看答案和解析>>

同步练习册答案