精英家教网 > 高中数学 > 题目详情
13.对于x与y有如下观测数据:
x1825303941424952
y356788910
(1)作出散点图;
(2)对x与y作回归分析;
(3)求出y对x的回归直线方程;
(4)根据回归直线方程,预测y=20时x的值.

分析 (1)根据所给的这一组数据,把这几个点的坐标在直角坐标系中描出对应的点,得到散点图;
(2)从散点图可以看出,这两个两之间是正相关;
(3)根据所给的这组数据,写出利用最小二乘法要用的量的结果,把所求的这些结果代入公式求出线性回归方程的系数,进而求出a的值,写出线性回归方程;
(4)根据上一问做出的线性回归方程,把y的值代入方程,预报出对应的x的值.

解答 解:(1)根据所给的这一组数据,得到散点图.

(2)从散点图可以看出,这两个两之间是正相关;

x1825303941424952
y356788910
(3)$\overline{x}$=$\frac{18+25+30+39+41+42+49+52}{8}$=37,$\overline{y}$=$\frac{3+5+6+7+8+8+9+10}{8}$=7
$\sum_{i=1}^{8}$${{x}_{i}}^{2}$=11920,$\sum_{i=1}^{8}$xiyi=2257
∴b=$\frac{2257-4×37×7}{11920-4×3{7}^{2}}$≈0.19,
∴a=7-0.19×37=-0.03
∴回归直线方程为y=0.19x-0.03;
(4)当y=20时,20=0.19x-0.03,
∴x≈105

点评 本题考查线性回归方程的求法和应用,是一个基础题,这种题目解题的关键是求出最小二乘法所要用到的量,数字的运算不要出错.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.某商场每天上午10 点开门,晚上 19 点停止进入.在如图所示的框图中,t表示整点时刻,a(t )表示时间段[t-1,t)内进入商场人次,S 表示某天某整点时刻前进入商场人次总和,为了统计某天进入商场的总人次数,则判断框内可以填(  )
A.t≤17?B.t≥19?C.t≥18?D.t≤18?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足$\overrightarrow{OP}=\frac{\overrightarrow{OB}+\overrightarrow{OC}}{2}$+$λ\overrightarrow{AP}$,λ∈(0,+∞),则P点的轨迹一定通过△ABC的重心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足,2$\overrightarrow{a}$+$\overrightarrow{b}$=(0,2λ),$\overrightarrow{a}$-$\overrightarrow{b}$=($\frac{3\sqrt{3}}{2}$λ,-$\frac{1}{2}$λ),且$\overrightarrow{a}$•$\overrightarrow{b}$=-1.
(1)求实数λ的值;
(2)求$\overrightarrow{a}$,$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知|x-a|<$\frac{?}{2m}$,0<|y-b|<($\frac{?}{2|a|}$),y∈(0,m),求证:|xy-ab|<?.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ex+x,g(x)=lnx+x,h(x)=lnx-1的零点依次为a、b、c,试判断a、b、c的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.等差数列{an}和{bn}的公差分别为d1,d2,且am=p,an=q(p≠q),bp=m,bq=n(mn),则d1,d2的关系是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a1+a2+a3+…+an=n-an,其中n∈N.
(1)求数列{an}的通项公式;
(2)令bn=(1+n)(1-an),求数列bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=2sinxcosx+cos2x-sin2x.
(1)求f(x)最小正周期;
(2)求f(x)最大最小值以及相应的x值.

查看答案和解析>>

同步练习册答案