| A. | 1 | B. | 2 | C. | 3 | D. | 0 |
分析 写出f(x)的解析式,令h(x)=g(x)-f(x),分段讨论h(x)的零点个数.
解答 解:f(x)=$\left\{\begin{array}{l}{-x,0<x<1}\\{0,x=1}\\{x,x>1}\end{array}\right.$,令h(x)=g(x)-f(x)=$\left\{\begin{array}{l}{{x}^{4}-{x}^{2}+x,0<x<1}\\{0,x=1}\\{{x}^{4}-{x}^{2}-x}\end{array}\right.$.
(1)当0<x<1时,h(x)=x4-x2+x=x(x3-x+1)=x(x(x2-1)+1),
∵0<x<1,∴-1<x2-1<0,∴-1<x(x2-1)<0,∴0<x(x2-1)+1<1,∴x(x(x2-1)+1)>0,即h(x)>0,
∴h(x)在(0,1)上无零点.
(2)当x=1时,h(x)=h(1)=g(1)-f(1)=0,∴x=1是h(x)的零点.
(3)当x>1时,h(x)=x4-x2-x,h′(x)=4x3-2x-1,h″(x)=12x2-2,∴当x>1时,h″(x)>0
∴h′(x)在(1,+∞)上是单调递增函数,∴hmin′(x)=h′(1)=1>0,∴h(x)在(1,+∞)上是单调递增函数,
∵h(1)=-1<0,∴h(x)在(1,+∞)上存在唯一一个零点.
综上,h(x)有两个零点,即f(x)与g(x)的图象有两个交点.
故选:B.
点评 本题考查了分段函数的零点个数,导数与函数单调性的关系,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\sqrt{3}$ | C. | 3 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 转速x(转/秒) | 8 | 10 | 12 | 14 | 16 |
| 每小时生产有缺点的零件数y(件) | 5 | 7 | 8 | 9 | 11 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1)∪(2,+∞) | B. | (0,1) | C. | (2,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com