精英家教网 > 高中数学 > 题目详情
11.定义符号函数:sgn(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,则函数f(x)=x•sgn(lnx)与函数g(x)=x4-x2的图象的交点个数为(  )
A.1B.2C.3D.0

分析 写出f(x)的解析式,令h(x)=g(x)-f(x),分段讨论h(x)的零点个数.

解答 解:f(x)=$\left\{\begin{array}{l}{-x,0<x<1}\\{0,x=1}\\{x,x>1}\end{array}\right.$,令h(x)=g(x)-f(x)=$\left\{\begin{array}{l}{{x}^{4}-{x}^{2}+x,0<x<1}\\{0,x=1}\\{{x}^{4}-{x}^{2}-x}\end{array}\right.$.
(1)当0<x<1时,h(x)=x4-x2+x=x(x3-x+1)=x(x(x2-1)+1),
∵0<x<1,∴-1<x2-1<0,∴-1<x(x2-1)<0,∴0<x(x2-1)+1<1,∴x(x(x2-1)+1)>0,即h(x)>0,
∴h(x)在(0,1)上无零点.
(2)当x=1时,h(x)=h(1)=g(1)-f(1)=0,∴x=1是h(x)的零点.
(3)当x>1时,h(x)=x4-x2-x,h′(x)=4x3-2x-1,h″(x)=12x2-2,∴当x>1时,h″(x)>0
∴h′(x)在(1,+∞)上是单调递增函数,∴hmin′(x)=h′(1)=1>0,∴h(x)在(1,+∞)上是单调递增函数,
∵h(1)=-1<0,∴h(x)在(1,+∞)上存在唯一一个零点.
综上,h(x)有两个零点,即f(x)与g(x)的图象有两个交点.
故选:B.

点评 本题考查了分段函数的零点个数,导数与函数单调性的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.若α是第二象限的角,则$\frac{α}{2}$是第几象限的角?$\frac{α}{3}$是第几象限的角?2α是第几象限的角?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知三棱锥P-ABC的四个顶点都在半径为2的球面上,且PA⊥平面ABC,若AB=2.AC=$\sqrt{3}$,∠BAC=$\frac{π}{2}$,则棱PA的长为(  )
A.$\frac{3}{2}$B.$\sqrt{3}$C.3D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.正态分布N(1,9)在区间(2,3)和(-1,0)上取值的概率分别为m,n,则(  )
A.m>nB.m<nC.m=nD.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,具有线性相关关系,下表为抽样试验的结果:
 转速x(转/秒) 8 10 12 14 16
 每小时生产有缺点的零件数y(件) 5 7 8 911
(1)如果y对x有线性相关关系,求回归方程;
(2)若实际生产中,允许每小时生产的产品中有缺点的零件最多有10个,那么机器的运转速度应控制在设么范围内?参考公式:$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=loga[($\frac{1}{a}$-1)x+3]在区间[2,3]上的函数值小于1恒成立,则实数a的取值范围是(  )
A.(0,1)∪(2,+∞)B.(0,1)C.(2,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知O为△ABC内一点,满足$\overrightarrow{OA}$+3$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,则△AOC与△ABC的面积之比为$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若变量x,y满足约束条件$\left\{\begin{array}{l}{y-4≤0}\\{x+y-4≥0}\\{x-y≤0}\end{array}\right.$,则z=3x-2y的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在等比数列{an}中,1≤a1≤$\sqrt{2}$≤a2≤2,Sn是其前n项和,则S10的取值范围为[10$\sqrt{2}$,1023].

查看答案和解析>>

同步练习册答案