分析 利用等比数列通项公式列出方程组,求出首项和公比,由此能求出an.
解答 解:∵等比数列{an}满足:a2+a4=5,a3a5=1且an>0,
∴$\left\{\begin{array}{l}{{a}_{1}q+{a}_{1}{q}^{3}=5}\\{{a}_{1}{q}^{2}•{a}_{1}{q}^{4}=1}\end{array}\right.$,且q>0,
解得${a}_{1}=8,q=\frac{1}{2}$,
an=${a}_{1}{q}^{n-1}=8×(\frac{1}{2})^{n-1}$=2-n+4.
故答案为:2-n+4.
点评 本题考查等比数列的通项公式的求法,考查等比数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | 150° | B. | 120° | C. | 60° | D. | 30° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2sin10° | C. | 2cos10° | D. | cos20° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{π}{3}$或$\frac{2π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{4}$或$\frac{3π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 三个内角都大于或等于60° | |
| B. | 三个内角都小于60° | |
| C. | 三个内角至多有一个小于60° | |
| D. | 三个内角至多有两个大于或等于60° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com